Matemática, perguntado por nilsoneng, 1 ano atrás

 Calcule o ângulo entre as retas r : 4x − y + 4 = 0 e s : 4x − 3y + 8 = 0

Soluções para a tarefa

Respondido por MATHSPHIS
1
A tangente trigonométrica do ângulo formado por duas retas é dada por;

tg \alpha=\| \frac{m_s-m_r}{1+m_s.m_r} \|

m_s=\frac{-4}{-3}=\frac{4}{3}  \\
\\
m_r=\frac{1}{4}  \\
\\
tg \alpha= \|\frac{\frac{4}{3}-\frac{1}{4}}{1+\frac{4}{3}.\frac{1}{4}} \|  \\
\\
tg \alpha=\|\frac{\frac{13}{12}}{\frac{4}{3}} \| \\
\\
tg \alpha=\frac{13}{12}.\frac{3}{4}=\frac{13}{9} \approx 1,44  \\
\\
\alpha \approx 55 ^o
Respondido por solkarped
3

✅ Após resolver os cálculos, concluímos que o ângulo entre as referidas retas é:

         \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \theta \cong 22,83^{\circ}\:\:\:}}\end{gathered}$}

Sejam as retas:

     \Large\begin{cases} r: 4x - y + 4 = 0\\s: 4x - 3y + 8 = 0\end{cases}

Quando estamos procurando a medida do ângulo entre as retas, na realidade estamos procurando o menor ângulo entre as retas e, para isso, devemos utilizar a seguinte fórmula:

\Large\displaystyle\text{$\begin{gathered} \bf(I)\end{gathered}$}      \Large\displaystyle\text{$\begin{gathered} \theta = \arctan \bigg(\bigg|\frac{m_{r} - m_{s}}{1 + m_{r}\cdot m_{s}}\bigg|\bigg), \:\:\:\textrm{com}\:0 < \theta < 90^{\circ}\end{gathered}$}

Para resolver esta questão devemos:

  • Calcular o coeficiente angular da reta "r".

               \Large\displaystyle\text{$\begin{gathered} -y = -4x - 4\end{gathered}$}    

                  \Large\displaystyle\text{$\begin{gathered} y = 4x + 4\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} \therefore\:\:\: m_{r} = 4\end{gathered}$}

  • Calcular o coeficiente angular da reta s.

               \Large\displaystyle\text{$\begin{gathered} -3y = -4x - 8\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} 3y = 4x + 8\end{gathered}$}

                     \Large\displaystyle\text{$\begin{gathered} y = \frac{4}{3}x + \frac{8}{3}\end{gathered}$}

                     \Large\displaystyle\text{$\begin{gathered} \therefore\:\:m_{s} = \frac{4}{3}\end{gathered}$}

  • Substituindo os valores dos coeficientes angulares na equação "I", temos:

                \Large\displaystyle\text{$\begin{gathered} \theta = \arctan \bigg(\bigg|\frac{4 -\frac{4}{3}}{1 + 4\cdot\frac{4}{3}}\bigg|\bigg)\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered} = \arctan \bigg(\bigg|\frac{\frac{8}{3}}{1 + \frac{16}{3}}\bigg|\bigg)\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered} = \arctan \bigg(\bigg|\frac{\frac{8}{3}}{\frac{19}{3}}\bigg|\bigg)\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered} = \arctan \bigg(\bigg|\frac{8}{19}\bigg|\bigg)\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered} = \arctan \bigg(\frac{8}{19}\bigg)\end{gathered}$}

✅Portanto, o ângulo procurado é:

        \Large\displaystyle\text{$\begin{gathered} \theta = \arctan (0,4210526316) \Longrightarrow \theta \cong 22,83^{\circ}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52000661
  2. https://brainly.com.br/tarefa/227145

Veja a solução gráfica da questão representada na figura:

Anexos:
Perguntas interessantes