Matemática, perguntado por EinsteinBrainly, 5 meses atrás

Calcule ( não consegui digitar pois são números elevados etc.)

Anexos:

Soluções para a tarefa

Respondido por Leticia1618
1

Explicação passo-a-passo:

.

a) \dfrac{ \sqrt{3} }{3}  \times 5 \sqrt{12}  \times  \dfrac{ \sqrt{8} }{10}  \times 3 \sqrt{2}

 \sqrt{3}  \times 2 \sqrt{3}  \times   \dfrac{2 \sqrt{2} }{2}  \times  \sqrt{2}

3 \times 2 \sqrt{2}  \sqrt{2}

3 \times 2 \times 2

12

.

b)2 \sqrt{8}  \times 3 \sqrt{2}  \times  \sqrt[3]{27}

2  \times 2 \sqrt{2}  \times 3 \sqrt{2}  \times 3

2 \times 2 \times 2 \times 3 \times 3

72

.

c) \sqrt[3]{2}  \times  \sqrt[3]{16}  \times 3 \sqrt[3]{2}

 \sqrt[3]{4}  \times 2 \sqrt[3]{2}  \times 3

6 \sqrt[3]{8}

6 \times 2

12

.

d)3  \sqrt[4]{2}  \times 2 \sqrt[4]{3} \times  \sqrt[4]{8}

6 \sqrt[4]{48}

12 \sqrt[4]{3}

.

e)5 \sqrt{27}  \times  \sqrt[3]{9}

5 \sqrt[6]{27 {}^{3} }  \sqrt[6]{9 {}^{2} }

5 \sqrt[6]{27 {}^{3} \times 9 {}^{2}  }

5 \sqrt[6]{3 {}^{9} \times 3 {}^{4}  }

5 \sqrt[6]{3  {}^{13}  }

5 \times 3 {}^{2}  \sqrt[6]{3}

5 \times 9 \sqrt[6]{3}

45 \sqrt[6]{3}

.

f)2 \sqrt{2}  \times 4 \sqrt[4]{8} \times 8 \sqrt[8]{4}

2  \sqrt[8]{2 {}^{4} }  \times 4 \sqrt[8]{8 {}^{2} }  \times 8 \sqrt[8]{4}

2 \sqrt[8]{2 {}^{4} \times 8 {}^{2}  \times 4 \times 4 \times 8 }

2 \sqrt[8]{2 {}^{4} \times 2 {}^{6}  \times 2 {}^{2} \times 4 \times 8  }

2 \sqrt[8]{2 {}^{12} \times 4 \times 8 }

2 \sqrt{2 {}^{3}  \times 4 \times 8}

2 \times 2 \sqrt{2}  \times 4 \times 8

128 \sqrt{2}


Leticia1618: tem as letras sim
Respondido por Makaveli1996
1

Oie, tudo bom?

a)

 =  \frac{ \sqrt{3} }{3}  \: . \: 5 \sqrt{12}  \: . \:  \frac{ \sqrt{8} }{10}  \: . \: 3 \sqrt{2}

 =  \sqrt{3}  \: . \: 2 \sqrt{3}  \: . \:  \frac{2 \sqrt{2} }{2}  \: . \:  \sqrt{2}

 = 3 \: . \: 2 \sqrt{2}  \sqrt{2}

 = 3 \: . \: 2 \: . \: 2

\boxed { = 12}

b)

 = 2 \sqrt{8}  \: . \: 3 \sqrt{2}  \: . \:  \sqrt[3]{27}

 = 2 \: . \: 2 \sqrt{2}  \: . \: 3 \sqrt{2}  \: . \: 3

 = 2 \: . \: 2 \: . \: 2 \: . \: 3 \: . \: 3

\boxed { =72 }

c)

 =  \sqrt[3]{2}  \: . \:  \sqrt[3]{16}  \: . \: 3 \sqrt[3]{2}

 =   \sqrt[3]{4}  \: . \: 2 \sqrt[3]{2}  \: . \: 3

 =  \sqrt[3]{4 \: . \: 3}  \: . \: 6

 =  \sqrt[3]{8}  \: . \: 6

 = 6 \sqrt[3]{8}

 = 6 \: . \: 2

\boxed { =12 }

d)

 = 3 \sqrt[4]{2}  \: . \: 2 \sqrt[4]{3}  \: . \:  \sqrt[4]{8}

 = 6 \sqrt[4]{2 \: . \: 3 \: . \: 8}

 = 6 \sqrt[4]{48}

 = 6 \sqrt[4]{2 {}^{4}  \: . \: 3}

 = 6 \sqrt[4]{2 {}^{4} }  \sqrt[4]{3}

 = 6 \: . \: 2 \sqrt[4]{3}

 =12 \sqrt[4]{3}

\boxed {≈15,79 }

e)

 = 5 \sqrt{27}  \: . \:  \sqrt[3]{9}

 = 5 \sqrt[6]{27 {}^{3} }  \sqrt[6]{9 {}^{2} }

 = 5 \sqrt[6]{27 {}^{3}  \: . \: 9 {}^{2} }

 = 5 \sqrt[6]{3 {}^{9}  \: . \: 3 {}^{4} }

 = 5 \sqrt[6]{3 {}^{13} }

 = 5 \: . \: 3 {}^{2}  \sqrt[6]{3}

 = 5 \: . \: 9 \sqrt[6]{3}

 = 45 \sqrt[6]{3}

\boxed {≈54,04 }

f)

 = 2 \sqrt{2}  \: . \: 4 \sqrt[4]{8}  \: . \: 8 \sqrt[8]{4}

 = 2  \sqrt[8]{2 {}^{4} }  \: . \: 4 \sqrt[8]{8 {}^{2} }  \: . \: 8 \sqrt[8]{4}

 = 2 \sqrt[8]{2 {}^{4} \: . \: 8 {}^{2}  \: . \: 4 }  \: . \: 4 \: . \: 8

 = 2 \sqrt[8]{2 {}^{4}  \: . \: 2 {}^{6}  \: . \: 2 {}^{2} }  \: . \: 4 \: . \: 8

 = 2 \sqrt[8]{2 {}^{12} }  \: . \: 4 \: . \: 8

 = 2 \sqrt{2 {}^{3} }  \: . \: 4 \: . \: 8

 = 2 \: . \: 2 \sqrt{2}  \: . \: 4 \: . \: 8

 = 128 \sqrt{2}

\boxed {≈181,01 }

Att. NBA YoungBoy

Perguntas interessantes