Matemática, perguntado por heloisa229, 1 ano atrás

Calcule m para que se tenha 3.senB = √3 e 3.cosB = √6m.​

Soluções para a tarefa

Respondido por fefegamer858oto0s5
2

primeiro você tem que adquirir o senβ e o cosβ, e como ele oferece o triplo deles, é só passar o três multiplicando ele, dividindo o resultado, tendo:

senβ =\frac{\sqrt{3} }{3}

cosβ=\frac{6m}{3}

então é só colocar isso na equação das relações trigonométricas que é:

senx^{2} +cosx^{2} =1

então ficamos com:

(\frac{\sqrt{3} }{3})^{2}  +(\frac{6m}{3} )^{2}=1             desenvolvendo a equação:

\frac{3}{9} +\frac{6m}{9} =1      multiplicamos a conta toda por 9 para cortar a fração

3 + 6m = 9

6m = 6

m=1\\

então M = 1

Perguntas interessantes