Matemática, perguntado por vestibulandohelp, 8 meses atrás

Calcule k de modo que a reta que passa por A(1,1) e B(k + 1, 2k) tenha inclinação α = 60º, relativamente ao eixo x.

Soluções para a tarefa

Respondido por elizeugatao
9

Equação de uma reta :

\text y-\text y_\text o =\text{tg}(\alpha)( \text x-\text x_o)  \\\\ \underline{\text{onde}}: \\ \alpha = \text{inclina{\c c}{\~a}o da reta} \\\ \text x_\text o,\text y_\text o=\text{um ponto qualquer por onde a reta passa}

Temos :

\displaystyle \alpha = 60^\circ \\\\ \text A(1,1) \ ; \ \text B(\text k+1,\ 2\text k) \\\\ \underline{\text{Equa{\c c}{\~a}o da reta}}: \\\\ \text y-1=\text{tg}(60^\circ)(\text x-1) \\\\ \text y-1=\sqrt{3}.\text x-\sqrt{3}  \\\\ \underline{\text{Substituindo o ponto B}} :  \\\\ 2\text k-1=\sqrt{3}(\text k+1)-\sqrt{3} \\\\ 2\text k -1 = \sqrt{3}.\text k+\sqrt{3}-\sqrt{3} \\\\ \text k(2-\sqrt{3})=1\\\\

\displaystyle \text k = \frac{1}{2-\sqrt{3}}  \to \text k =\frac{1}{(2-\sqrt{3})}\frac{(2+\sqrt{3})}{(2+\sqrt3)} \\\\\\ \text k = \frac{2+\sqrt{3}}{4-3} \to \text k = \frac{2+\sqrt{3}}{1}\\\\\\ \huge\boxed{\text k = 2+\sqrt{3}\ } \checkmark

Respondido por solkarped
1

✅ Após resolver todos os cálculos, concluímos que o valor numérico do parâmetro "k" que verifica a inclinação da reta dada é:

            \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf k = 2 + \sqrt{3}\:\:\:}}\end{gathered}$}

Sejam os dados:

         \Large\begin{cases} A = (1, 1)\\B = (k + 1,\,2k)\\\alpha = 60^{\circ}\\k = \:?\end{cases}

Sabemos que a inclinação - declividade -  de uma reta é o ângulo que esta forma com o eixo das abscissas em seu sentido positivo. Para calcular a medida deste ângulo, devemos obter a medida do arco cuja tangente vale a medida do coeficiente angular, ou seja:

\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}                \Large\displaystyle\text{$\begin{gathered} \alpha = \arctan(m_{r})\end{gathered}$}

Desenvolvendo a equação "I", temos:

                  \Large\displaystyle\text{$\begin{gathered} \alpha = \arctan(\tan \alpha)\end{gathered}$}

                  \Large\displaystyle\text{$\begin{gathered} \alpha = \arctan\bigg(\frac{\sin\alpha}{\cos\alpha}\bigg)\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \bf II\end{gathered}$}               \Large\displaystyle\text{$\begin{gathered} \alpha = \arctan\bigg(\frac{y_{B} - y_{A}}{x_{B} - x_{A}}\bigg)\end{gathered}$}

Substituindo os dados na equação "II", temos:

                 \Large\displaystyle\text{$\begin{gathered} 60^{\circ} = \arctan\bigg(\frac{2k - 1}{(k + 1) - 1}\bigg)\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} 60^{\circ} = \arctan\bigg(\frac{2k - 1}{k + 1 - 1}\bigg)\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \bf III\end{gathered}$}           \Large\displaystyle\text{$\begin{gathered} 60^{\circ} = \arctan\bigg(\frac{2k - 1}{k}\bigg)\end{gathered}$}

Sabendo que:

    \Large\displaystyle\text{$\begin{gathered} \tan 60^{\circ} = \sqrt{3} \:\:\:\Longrightarrow \:\:\:60^{\circ} = \arctan(\sqrt{3})\end{gathered}$}

Então, temos:

 \Large\displaystyle\text{$\begin{gathered} \arctan(\sqrt{3}) = \arctan\bigg(\frac{2k - 1}{k}\bigg)\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered} \sqrt{3} = \frac{2k - 1}{k}\end{gathered}$}

Para facilitar a visualização dos cálculos, podemos inverter os membros sem perda alguma de generalidade. Então temos:

           \Large\displaystyle\text{$\begin{gathered} \frac{2k - 1}{k} = \sqrt{3}\end{gathered}$}

            \Large\displaystyle\text{$\begin{gathered} 2k - 1 = \sqrt{3}k\end{gathered}$}

     \Large\displaystyle\text{$\begin{gathered} 2k - \sqrt{3}k = 1\end{gathered}$}

    \Large\displaystyle\text{$\begin{gathered} (2 - \sqrt{3})k = 1\end{gathered}$}

                        \Large\displaystyle\text{$\begin{gathered} k = \frac{1}{2 - \sqrt{3}}\end{gathered}$}

                        \Large\displaystyle\text{$\begin{gathered} k = \frac{1}{2 - \sqrt{3}}\cdot\frac{2 + \sqrt{3}}{2 + \sqrt{3}}\end{gathered}$}

                        \Large\displaystyle\text{$\begin{gathered} k = \frac{2 + \sqrt{3}}{2^{2} - (\sqrt{3})^{2}}\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} k = \frac{2 + \sqrt{3}}{4 - 3}\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} k = \frac{2 + \sqrt{3}}{1}\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered} k = 2 + \sqrt{3}\end{gathered}$}

✅ Portanto, "k" é:

                         \Large\displaystyle\text{$\begin{gathered} k = 2 + \sqrt{3}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/5310883
  2. https://brainly.com.br/tarefa/22950513
  3. https://brainly.com.br/tarefa/5306956
  4. https://brainly.com.br/tarefa/12971168
  5. https://brainly.com.br/tarefa/37898356
  6. https://brainly.com.br/tarefa/24007775
  7. https://brainly.com.br/tarefa/13153342
  8. https://brainly.com.br/tarefa/22403498
  9. https://brainly.com.br/tarefa/921473
  10. https://brainly.com.br/tarefa/44509586
Anexos:
Perguntas interessantes