Matemática, perguntado por sketelly316, 6 meses atrás

calcule as seguintes potencias.​

Anexos:

Soluções para a tarefa

Respondido por RilaryMedeiros
1

Olá!

A)

3^4\\\\=81

B)

2^5\\\\=32

C)

1^4\\\\=1

D)

0^6\\\\=0

E)

\left(-2\right)^4\\\\=2^4\\\\=16

F)

\left(\frac{3}{4}\right)^3\\\\=\frac{3^3}{4^3}\\\\=\frac{27}{4^3}\\\\=\frac{27}{64}

G)

\left(-\frac{2}{3}\right)^3\\\\\left(-a\right)^n=-a^n\\\\\left(-\frac{2}{3}\right)^3=-\left(\frac{2}{3}\right)^3\\\\=-\left(\frac{2}{3}\right)^3\\\\\left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}\\\\\left(\frac{2}{3}\right)^3=\frac{2^3}{3^3}\\\\=-\frac{2^3}{3^3}\\\\2^3=8\\\\3^3=27\\\\=-\frac{8}{27}

H)

5^0\\\\=1

I)

\left(2,\:43\right)^0\\\\2.43^0\\\\=1

J)

\left(-0.5\right)^0\\\\=1

K)

17^1\\\\=17

L)

\left(1,\:45\right)^1\\\\1.45^1\\\\=1,45

M)

\left(-5\right)^1\\\\=-5

N)

\left(-\frac{4}{7}\right)^1\\\\=-\frac{4}{7}

O)

3^{-1}\\\\=\frac{1}{3}

P)

\left(-3\right)^{-2}\\\\^{-b}=\frac{1}{a^b}\\\\\left(-3\right)^{-2}=\frac{1}{\left(-3\right)^2}\\\\=\frac{1}{\left(-3\right)^2}\\\\\left(-3\right)^{-2}=9\\\\=\frac{1}{9}

Q)

2^{-4}\\\\a^{-b}=\frac{1}{a^b}\\\\2^{-4}=\frac{1}{2^4}\\\\=\frac{1}{2^4}\\\\2^4=16\\\\=\frac{1}{16}

R)

\left(\frac{2}{3}\right)^{-2}\\\\a^{-b}=\frac{1}{a^b}\\\\\left(\frac{2}{3}\right)^{-2}=\frac{1}{\left(\frac{2}{3}\right)^2}\\\\=\frac{1}{\left(\frac{2}{3}\right)^2}\\\\\left(\frac{2}{3}\right)^{2}=\frac{4}{9}\\\\=\frac{1}{\frac{4}{9}}

S)

\left(-\frac{2}{3}\right)^{-4}\\\\a^{-b}=\frac{1}{a^b}\\\\\left(-\frac{2}{3}\right)^{-4}=\frac{1}{\left(-\frac{2}{3}\right)^4}\\\\=\frac{1}{\left(-\frac{2}{3}\right)^4}\\\\\left(-\frac{2}{3}\right)^{4}=\frac{16}{81}\\\\=\frac{1}{\frac{16}{81}}\\\\=\frac{81}{16}

T)

\left(-\frac{3}{4}\right)^{-3}\\\\a^{-b}=\frac{1}{a^b}\\\\\left(-\frac{3}{4}\right)^{-3}=\frac{1}{\left(-\frac{3}{4}\right)^3}\\\\=\frac{1}{\left(-\frac{3}{4}\right)^3}\\\\\left(-\frac{3}{4}\right)^{3}= \frac{27}{64} \\\\=\frac{1}{-\frac{27}{64}}\\\\=\frac{1}{-\frac{27}{64}}= -\frac{64}{27}\\\\=-\frac{64}{27}

U)

\left(\frac{1}{5}\right)^{-1}\\\\a^{-1}=\frac{1}{a}\\\\\left(\frac{1}{5}\right)^{-1}=\frac{1}{\frac{1}{5}}\\\\=\frac{1}{\frac{1}{5}}\\\\=\frac{1}{\frac{1}{5}}=5\\\\=5

V)

\left(\frac{1}{3}\right)^{-2}\\\\a^{-b}=\frac{1}{a^b}\\\\\left(\frac{1}{3}\right)^{-2}=\frac{1}{\left(\frac{1}{3}\right)^2}\\\\=\frac{1}{\left(\frac{1}{3}\right)^2}\\\\\left(\frac{1}{3}\right)^{-2}= \frac{1}{9} \\\\=\frac{1}{\frac{1}{9}}\\\\=\frac{1}{\frac{1}{9}}=9\\\\=9

W)

\left(-0.75\right)^{-2}\\\\a^{-b}=\frac{1}{a^b}\\\\\left(-0.75\right)^{-2}=\frac{1}{\left(-0.75\right)^2}\\\\=\frac{1}{\left(-0.75\right)^2}\\\\\left(-0.75\right)^{-2}=0,5625\\\\=\frac{1}{0.5625}

Espero ter ajudado, tenha bons estudos!

Perguntas interessantes