Matemática, perguntado por ulilissesluiz, 10 meses atrás

Calcule as Raízes Imaginárias das Equações de Segundo Grau ( Equação Polinomial ) Conforme Material de Estudo Sobre Números Complexos

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
4

Explicação passo-a-passo:

1) \sf x^2+9=0

\sf x^2=-9

\sf x^2=9\cdot(-1)

\sf x^2=9i^2

\sf x=\pm\sqrt{9i^2}

\sf x=\pm3i

\sf S=\{-3i,3i\}

2) \sf 2x^2+10=0

\sf 2x^2=-10

\sf x^2=\dfrac{-10}{2}

\sf x^2=-5

\sf x^2=5\cdot(-1)

\sf x^2=5i^2

\sf x=\pm\sqrt{5i^2}

\sf x=\pm\sqrt{5}\cdot i

\sf S=\{-\sqrt{5}\cdot i,\sqrt{5}\cdot i\}

3) \sf 2x^2-6x+9=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-6)^2-4\cdot2\cdot9

\sf \Delta=36-72

\sf \Delta=-36

\sf \Delta=36\cdot(-1)

\sf \Delta=36i^2

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-6)\pm\sqrt{36i^2}}{2\cdot2}=\dfrac{6\pm6i}{4}

\sf y'=\dfrac{6+6i}{4}~\longrightarrow~y'=\dfrac{3+3i}{2}

\sf y"=\dfrac{6-6i}{4}~\longrightarrow~y"=\dfrac{3-3i}{2}

\sf S=\left\{\dfrac{3-3i}{2},\dfrac{3+3i}{2}\right\}

4) \sf x^2-10x+34=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-10)^2-4\cdot1\cdot34

\sf \Delta=100-136

\sf \Delta=--36

\sf \Delta=36\cdot(-1)

\sf \Delta=36i^2

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-10)\pm\sqrt{36i^2}}{2\cdot1}=\dfrac{10\pm6i}{2}

\sf y'=\dfrac{10+6i}{4}~\longrightarrow~y'=5+3i

\sf y"=\dfrac{10-6i}{4}~\longrightarrow~y"=5-3i

\sf S=\{5-3i,5+3i\}

5) \sf 6x^2+216=0

\sf 6x^2=-216

\sf x^2=\dfrac{-216}{6}

\sf x^2=-36

\sf x^2=36\cdot(-1)

\sf x^2=36i^2

\sf x=\pm\sqrt{36i^2}

\sf x=\pm6i

\sf S=\{-6i,6i\}


ulilissesluiz: obrigado paulo de novo... :( acabei de postar mais uma se puder...
Perguntas interessantes