Matemática, perguntado por eusouopedro, 6 meses atrás

Calcule as potencias

Anexos:

Soluções para a tarefa

Respondido por rhydia
0

a.

 \boxed{{4}^{ - 3}  =  \frac{1}{ {4}^{3} }  = \red{ \frac{1}{64} }}

b.

\boxed{ {6}^{ - 2}  =  \frac{1}{ {6}^{2} }  = \red{ \frac{1}{36}} }

c.

\boxed{ {1}^{ - 30}  =  \frac{1}{ {1}^{30} }  =\red{  \frac{1}{1}  = 1}}

d.

 \boxed{{10}^{ - 4}  =  \frac{1}{ {10}^{4} }  =\red{  \frac{1}{10 \: 000}}}

e.

\boxed{ {0.2}^{ - 3}  =  \frac{1}{0.2 ^{3} }  = \red{ \frac{1}{0.008}}}

Anexos:
Respondido por CyberKirito
1

\Large\boxed{\begin{array}{l}\underline{\rm Pot\hat encia~de~expoente~negativo}\\\huge\boxed{\boxed{\boxed{\boxed{\sf\bigg(\dfrac{b}{a}\bigg)^{-n}=\bigg(\dfrac{a}{b}\bigg)^n}}}}\end{array}}

\boxed{\begin{array}{l}\tt a)~\sf4^{-3}=\bigg(\dfrac{4}{1}\bigg)^{-3}=\bigg(\dfrac{1}{4}\bigg)^3=\dfrac{1}{64}\\\\\tt b)~\sf 6^{-2}=\bigg(\dfrac{6}{1}\bigg)^{-2}=\bigg(\dfrac{1}{6}\bigg)^2=\dfrac{1}{36}\end{array}}

\Large\boxed{\begin{array}{l}\tt c)\\\sf 1^{a}=1~\forall~a\in\mathbb{R}\\\sf portanto~1^{-30}=1\end{array}}

\large\boxed{\begin{array}{l}\tt d)~\sf 10^{-4}=\bigg(\dfrac{10}{1}\bigg)^{-4}=\bigg(\dfrac{1}{10}\bigg)^4=\dfrac{1}{10~000}\end{array}}

\large\boxed{\begin{array}{l}\tt e)~\sf0,2=\dfrac{2}{10}=\dfrac{1}{5}\\\\\sf0,2^{-3}=\bigg(\dfrac{1}{5}\bigg)^{-3}=\bigg(\dfrac{5}{1}\bigg)^3=5^3=125\end{array}}

Perguntas interessantes