Calcule as integrais por substituição de variável
Anexos:
![](https://pt-static.z-dn.net/files/d31/b1135e6cfae0c14d409671423a673707.jpg)
cabraldapraia:
Lukyo ou david responde essa com clareza
Soluções para a tarefa
Respondido por
2
Bom dia Lucas!
Solução!
![\displaystyle \int \sqrt{senx}.cosxdx\\\\\\
u=senx~~~~du=cosxdx\\\\\\\\
\displaystyle \int \sqrt{u}\\\\\\\\\
Fazendo!\\\\\\\
\sqrt{u}=(u)^{ \frac{1}{2}}= \frac{(u)^{ \frac{1}{2}+1 } }{ \frac{1}{2} +1}=\frac{(u)^{ \frac{3}{2} } }{ \frac{3}{2} }= \frac{2}{3} \sqrt{(u)^{3} }\\\\\\\\\
\frac{2}{3} \sqrt{(u)^{3} }+c\\\\\\\\\
\frac{2}{3} \sqrt{(senx)^{3} }+c\\\\\\\\\
\boxed{Resposta:\displaystyle \int \sqrt{senx}.cosxdx= \frac{2}{3} \sqrt{(senx)^{3} }+c} \displaystyle \int \sqrt{senx}.cosxdx\\\\\\
u=senx~~~~du=cosxdx\\\\\\\\
\displaystyle \int \sqrt{u}\\\\\\\\\
Fazendo!\\\\\\\
\sqrt{u}=(u)^{ \frac{1}{2}}= \frac{(u)^{ \frac{1}{2}+1 } }{ \frac{1}{2} +1}=\frac{(u)^{ \frac{3}{2} } }{ \frac{3}{2} }= \frac{2}{3} \sqrt{(u)^{3} }\\\\\\\\\
\frac{2}{3} \sqrt{(u)^{3} }+c\\\\\\\\\
\frac{2}{3} \sqrt{(senx)^{3} }+c\\\\\\\\\
\boxed{Resposta:\displaystyle \int \sqrt{senx}.cosxdx= \frac{2}{3} \sqrt{(senx)^{3} }+c}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint++%5Csqrt%7Bsenx%7D.cosxdx%5C%5C%5C%5C%5C%5C%0Au%3Dsenx%7E%7E%7E%7Edu%3Dcosxdx%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cdisplaystyle+%5Cint++%5Csqrt%7Bu%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0AFazendo%21%5C%5C%5C%5C%5C%5C%5C%0A%0A+%5Csqrt%7Bu%7D%3D%28u%29%5E%7B+%5Cfrac%7B1%7D%7B2%7D%7D%3D+%5Cfrac%7B%28u%29%5E%7B+%5Cfrac%7B1%7D%7B2%7D%2B1+%7D+%7D%7B+%5Cfrac%7B1%7D%7B2%7D+%2B1%7D%3D%5Cfrac%7B%28u%29%5E%7B+%5Cfrac%7B3%7D%7B2%7D+%7D+%7D%7B+%5Cfrac%7B3%7D%7B2%7D+%7D%3D+%5Cfrac%7B2%7D%7B3%7D++%5Csqrt%7B%28u%29%5E%7B3%7D+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C+++%0A++%5Cfrac%7B2%7D%7B3%7D++%5Csqrt%7B%28u%29%5E%7B3%7D+%7D%2Bc%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A++%5Cfrac%7B2%7D%7B3%7D++%5Csqrt%7B%28senx%29%5E%7B3%7D+%7D%2Bc%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0A%5Cboxed%7BResposta%3A%5Cdisplaystyle+%5Cint++%5Csqrt%7Bsenx%7D.cosxdx%3D+%5Cfrac%7B2%7D%7B3%7D++%5Csqrt%7B%28senx%29%5E%7B3%7D+%7D%2Bc%7D)
Boa tarde!
Bons estudos!
Solução!
Boa tarde!
Bons estudos!
Respondido por
1
∫![\sqrt{senx}.cosxdx \sqrt{senx}.cosxdx](https://tex.z-dn.net/?f=+%5Csqrt%7Bsenx%7D.cosxdx+)
u = senx
du = cosxdx
∫√u . du
∫![u^{ \frac{1}{2} } du u^{ \frac{1}{2} } du](https://tex.z-dn.net/?f=+u%5E%7B+%5Cfrac%7B1%7D%7B2%7D+%7D+du)
![\frac{ u^{ \frac{3}{2} } }{ \frac{3}{2} } \frac{ u^{ \frac{3}{2} } }{ \frac{3}{2} }](https://tex.z-dn.net/?f=++%5Cfrac%7B+u%5E%7B+%5Cfrac%7B3%7D%7B2%7D+%7D+%7D%7B+%5Cfrac%7B3%7D%7B2%7D+%7D++)
![\frac{2}{3}. u^{ \frac{3}{2} } \frac{2}{3}. u^{ \frac{3}{2} }](https://tex.z-dn.net/?f=+%5Cfrac%7B2%7D%7B3%7D.+u%5E%7B+%5Cfrac%7B3%7D%7B2%7D+%7D++)
![\frac{2}{3}. (senx)^{ \frac{3}{2} }+c \frac{2}{3}. (senx)^{ \frac{3}{2} }+c](https://tex.z-dn.net/?f=+%5Cfrac%7B2%7D%7B3%7D.++%28senx%29%5E%7B+%5Cfrac%7B3%7D%7B2%7D+%7D%2Bc+)
u = senx
du = cosxdx
∫√u . du
∫
Perguntas interessantes
Matemática,
1 ano atrás
Inglês,
1 ano atrás
Geografia,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás