Calcule as expressões
Soluções para a tarefa
Explicação passo-a-passo:
Basta saber que:
cos0=1 cosπ/2=0 cosπ=-1 cos3π/2=0 cos2π=1
sen0=0 senπ/2=1 senπ=0 sen3π/2=-1 sen2π=0
sen30°=1/2 sen45°=✓2/2 sen60°=✓3/2
cos30°=✓3/2 cos45°=✓2/2 cos60°=1/2
a) cos2π+3cosπ-(1/2)sen(π/2)
=1+3•(-1)-(1/2)•1
=1-3-(1/2)
=-2-(1/2)
=-4/2-1/2
=(-4-1)/2
=-5/2
b) 2sen(π/4)-4sen(π/2)+6cos(3π/2)
=2sen(π/4)-4•1+6•0
=2sen(π/4)-4
Agora para sen(π/4), note que π/4=180°/4=45°.
Logo,
=2•sen45°-4
=2•(✓2/2)-4
=✓2-4
c)sen(2π-(5π/6))
Para isso,
2π-(5π/6)=12π/6-5π/6=(12π-5π)/6=7π/6
Note que 7π/6=(7•180°)/6=210°
Temos que descobrir quanto vale o seno de 210°:
Note que 210°=30°+180°
sen(210°)=sen(30°+180°)=sen(30°)cos(180°)+sen(180°)cos(30°)
(pois sen(a+b)=senacosb+senbcosa
180°=π
=sen(30°)cos(180°)+sen(180°)cos(30°)
=sen(30°)cos(π)+sen(π)cos(30°)
=1/2•(-1)+0•(✓3/2)
=-1/2
d) cos(sen 2π)=cos0=1
e)cos(2π+π/3)
Basta abrir a soma do cosseno, isto é, cos(a+b)=cosacosb-senasenb.
cos(2π+π/3)=cos(2π)cos(π/3)-sen(2π)sen(π/3)
π/3=180°/3=60°
cos(2π)cos(π/3)-sen(2π)sen(π/3)
=cos(2π)cos(60°)-sen(2π)sen(60°)
=1•(1/2)-0•(✓3/2)
=1/2
f) cos2π+cosπ/3
π/3=180°/3=60°
cos2π+cosπ/3=cos2π+cos60°=1+1/2=2/2+1/2=(2+1)/2=3/2
g) sen120°+sen240°+sen360°
Note que:
360°=2π
240°=180°+60°=π+60°
120°=90°+30°=(π/2)+30°
Logo,
sen120°+sen240°+sen360°
=sen(π/2+30°)+sen(π+60°)+sen(2π)
=sen(π/2)cos(30°)+sen(30°)cos(π/2)+sen(π)cos(60°)+sen(60°)cos(π)+sen(2π)
=1•(✓3/2)+(1/2)•0+0•(1/2)+(✓3/2)•(-1)+0
=✓3/2-(✓3/2)
=0
h) 3cos300°-2cos225°+cos120°
Note que:
300°=270°+30°=3π/2+30°
225°=180°+45°=π+45°
120°=30°+90°=30°+π/2
3cos300°-2cos225°+cos120°
=3cos(3π/2+30°)-2cos(π+45°)+cos(30°+π/2)
=3[cos(3π/2)cos(30°)-sen(3π/2)sen(30°)]-2[cos(π)cos(45°)-sen(π)sen(45°)]+cos(30°)cos(π/2)-sen(30°)sen(π/2)]
=3[0•(✓3/2)-(-1)•(1/2)]-2[(-1)•(✓2/2)-0•(✓2/2)]+(✓3/2)•0-(1/2)•1
=3[1/2]-2[-✓2/2]-1/2
=3•1/2-2•(-✓2/2)-1/2
=3/2+✓2-1/2
=(3-1)/2+✓2
=2/2+✓2
=1+✓2