Filosofia, perguntado por aluna6375, 10 meses atrás

Calcule as coordenadas do ponto M(ponto médio) do segmento AB, sendo:
a) A(-1,4) e B(5,2)
b) A/3,-1) e B(-2,1)
c) A(1,7) e B(11,3)
d) A(-2,5) e B(-4,-1)​

Soluções para a tarefa

Respondido por Usuário anônimo
7

Explicação:

a)

\sf x_M=\dfrac{x_{A}+x_{B}}{2}

\sf x_M=\dfrac{-1+5}{2}

\sf x_M=\dfrac{4}{2}

\sf \red{x_M=2}

\sf y_M=\dfrac{y_{A}+y_{B}}{2}

\sf y_M=\dfrac{4+2}{2}

\sf y_M=\dfrac{6}{2}

\sf \red{y_M=3}

Logo, \sf \red{M(2,3)}

b)

\sf x_M=\dfrac{x_{A}+x_{B}}{2}

\sf x_M=\dfrac{3-2}{2}

\sf \red{x_M=\dfrac{1}{2}}

\sf y_M=\dfrac{y_{A}+y_{B}}{2}

\sf y_M=\dfrac{-1+1}{2}

\sf y_M=\dfrac{0}{2}

\sf \red{y_M=0}

Logo, \sf \red{M\Big(\dfrac{1}{2},0\Big)}

c)

\sf x_M=\dfrac{x_{A}+x_{B}}{2}

\sf x_M=\dfrac{1+11}{2}

\sf x_M=\dfrac{12}{2}

\sf \red{x_M=6}

\sf y_M=\dfrac{y_{A}+y_{B}}{2}

\sf y_M=\dfrac{7+3}{2}

\sf y_M=\dfrac{10}{2}

\sf \red{y_M=5}

Logo, \sf \red{M(6,5)}

d)

\sf x_M=\dfrac{x_{A}+x_{B}}{2}

\sf x_M=\dfrac{-2-4}{2}

\sf x_M=\dfrac{-6}{2}

\sf \red{x_M=-3}

\sf y_M=\dfrac{y_{A}+y_{B}}{2}

\sf y_M=\dfrac{5-1}{2}

\sf y_M=\dfrac{4}{2}

\sf \red{y_M=2}

Logo, \sf \red{M(-3,2)}

Perguntas interessantes