Matemática, perguntado por ulilissesluiz, 11 meses atrás

Calcule as 4 raízes do polinômio...

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

1) \sf 2x^4-10x^2+8=0

\sf x^2=y

\sf 2(x^2)^2-10x^2+8=0

\sf 2y^2-10y+8=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-10)^2-4\cdot2\cdot8

\sf \Delta=100-64

\sf \Delta=36

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-10)\pm\sqrt{36}}{2\cdot2}=\dfrac{10\pm6}{4}

\sf y'=\dfrac{10+6}{4}~\longrightarrow~y'=\dfrac{16}{4}~\longrightarrow~y'=4

\sf y"=\dfrac{10-6}{4}~\longrightarrow~y"=\dfrac{4}{4}~\longrightarrow~y"=1

• Para \sf y'=4:

\sf x^2=4

\sf x=\pm\sqrt{4}

\sf x=\pm2

• Para \sf y"=1:

\sf x^2=1

\sf x=\pm\sqrt{1}

\sf x=\pm1

\sf S=\{-2,-1,1,2\}

2) \sf x^4-13x^2+36=0

\sf x^2=y

\sf (x^2)^2-13x^2+36=0

\sf y^2-13y+36=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-13)^2-4\cdot1\cdot36

\sf \Delta=169-144

\sf \Delta=25

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-13)\pm\sqrt{25}}{2\cdot1}=\dfrac{13\pm5}{2}

\sf y'=\dfrac{13+5}{2}~\longrightarrow~y'=\dfrac{18}{2}~\longrightarrow~y'=9

\sf y"=\dfrac{13-5}{2}~\longrightarrow~y"=\dfrac{8}{2}~\longrightarrow~y"=4

• Para \sf y'=9:

\sf x^2=9

\sf x=\pm\sqrt{9}

\sf x=\pm3

• Para \sf y"=4:

\sf x^2=4

\sf x=\pm\sqrt{4}

\sf x=\pm2

\sf S=\{-3,-2,2,3\}

3) \sf x^4-26x^2+25=0

\sf x^2=y

\sf (x^2)^2-26x^2+25=0

\sf y^2-26y+25=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-26)^2-4\cdot1\cdot25

\sf \Delta=676-100

\sf \Delta=576

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-26)\pm\sqrt{576}}{2\cdot1}=\dfrac{26\pm24}{2}

\sf y'=\dfrac{26+24}{2}~\longrightarrow~y'=\dfrac{50}{2}~\longrightarrow~y'=25

\sf y"=\dfrac{26-24}{2}~\longrightarrow~y"=\dfrac{2}{2}~\longrightarrow~y"=1

• Para \sf y'=25:

\sf x^2=25

\sf x=\pm\sqrt{25}

\sf x=\pm5

• Para \sf y"=1:

\sf x^2=1

\sf x=\pm\sqrt{1}

\sf x=\pm1

\sf S=\{-5,-1,1,5\}

4) \sf x^4-17x^2+16=0

\sf x^2=y

\sf (x^2)^2-17x^2+16=0

\sf y^2-17y+16=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-17)^2-4\cdot1\cdot16

\sf \Delta=289-64

\sf \Delta=225

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-17)\pm\sqrt{225}}{2\cdot1}=\dfrac{17\pm15}{2}

\sf y'=\dfrac{17+15}{2}~\longrightarrow~y'=\dfrac{32}{2}~\longrightarrow~y'=16

\sf y"=\dfrac{17-15}{2}~\longrightarrow~y"=\dfrac{2}{2}~\longrightarrow~y"=1

• Para \sf y'=16:

\sf x^2=16

\sf x=\pm\sqrt{16}

\sf x=\pm4

• Para \sf y"=1:

\sf x^2=1

\sf x=\pm\sqrt{1}

\sf x=\pm1

\sf S=\{-4,-1,1,4\}

5) \sf x^4-10x^2+9=0

\sf x^2=y

\sf (x^2)^2-10x^2+9=0

\sf y^2-10y+9=0

\sf \Delta=b^2-4\cdot a\cdot c

\sf \Delta=(-10)^2-4\cdot1\cdot9

\sf \Delta=100-36

\sf \Delta=64

\sf y=\dfrac{-b\pm\sqrt{\Delta}}{2\cdot a}

\sf y=\dfrac{-(-10)\pm\sqrt{64}}{2\cdot1}=\dfrac{10\pm8}{2}

\sf y'=\dfrac{10+8}{2}~\longrightarrow~y'=\dfrac{18}{2}~\longrightarrow~y'=9

\sf y"=\dfrac{10-8}{2}~\longrightarrow~y"=\dfrac{2}{2}~\longrightarrow~y"=1

• Para \sf y'=9:

\sf x^2=9

\sf x=\pm\sqrt{9}

\sf x=\pm3

• Para \sf y"=1:

\sf x^2=1

\sf x=\pm\sqrt{1}

\sf x=\pm2

\sf S=\{-3,-1,1,3\}


ulilissesluiz: ainnnn obrigado, acabei de postar outra se puder ver...
Perguntas interessantes