calcule a soma dos termos da PG (5, 15, 45,..., 3645).
Soluções para a tarefa
Respondido por
5
(5,15,45, ... 3645)
an = 3645
q = 3
a1 = 5
n = ?
Sn =?
an = a1 . q^n-1
3645 = 5 . 3 ^n-1
3^6 . 5^1 = 5 . 3^n-1
3^n-1 = 3^6 . 5 / 5
3^n-1 = 3^6 => cancela as bases
n-1 = 6
n = 7 ⇒ número de termos
Sn = a1 . (q^n - 1) / q -1
Sn = 5 . (3⁷ -1) / 3 - 1
Sn = 5 . (2187 - 1 ) / 2
Sn = 5 . 2186 / 2
Sn = 10 930 / 2
Sn = 5465 ⇒soma dos termos
an = 3645
q = 3
a1 = 5
n = ?
Sn =?
an = a1 . q^n-1
3645 = 5 . 3 ^n-1
3^6 . 5^1 = 5 . 3^n-1
3^n-1 = 3^6 . 5 / 5
3^n-1 = 3^6 => cancela as bases
n-1 = 6
n = 7 ⇒ número de termos
Sn = a1 . (q^n - 1) / q -1
Sn = 5 . (3⁷ -1) / 3 - 1
Sn = 5 . (2187 - 1 ) / 2
Sn = 5 . 2186 / 2
Sn = 10 930 / 2
Sn = 5465 ⇒soma dos termos
daniel1281:
muito obrigado
Perguntas interessantes
Português,
10 meses atrás
Matemática,
10 meses atrás
Química,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás