calcule a soma dos termos da PA (2,4,6,8,10...220)
Soluções para a tarefa
Respondido por
1
Olá, Geisle. (=^.^=)/
P.A (2,4,6,8,10...220)
(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220)
Soma os valores dos números encontrados acima, total de 12220
A1 = 2
N = 110
An = 110 = 220
R = 2
Portanto, as somas de termos da P.A acima é 12220.
Sempre ás ordens.
Bons estudos! :-)
P.A (2,4,6,8,10...220)
(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220)
Soma os valores dos números encontrados acima, total de 12220
A1 = 2
N = 110
An = 110 = 220
R = 2
Portanto, as somas de termos da P.A acima é 12220.
Sempre ás ordens.
Bons estudos! :-)
Perguntas interessantes
Português,
8 meses atrás
Ed. Física,
8 meses atrás
Português,
8 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás