Matemática, perguntado por elisabetesdsantos2, 6 meses atrás

Calcule a soma dos números inteiros positivos menores que 5000 que são divisíveis por 7?

Soluções para a tarefa

Respondido por vinetaus
2

Resposta:

olha penso q pra vc resolver essa questão é necessário saber um pouco de P.A e o critério de divisibilidade por 7.

os números devem ser positivos,inteiros e inferiores a 501 , logo o primeiro inteiro é 1 e o último é 500.

primeiro vc faz uma sequência de razão 1 com todos os números de 1 até 500.

(1,2,3,4,5.......500) .aí é só calcular a soma dos termos:

< var > \frac{(1+500).500}{2} = < /var ><var>

2

(1+500).500

=</var>

Sn = 501.250 = 125250

agora vc deve perceber q todos os números menores q 501 e divisíveis por 7 fazem a seguinte sequência, q é uma PA de razão 7 :

(7,14,21,28,.....,497)

onde 497 é o maior número inferior a 501 e divisível por 7.

agora pra descobrir a quantidade de termos dessa sequência basta pegar o último termo e dividir pelo primeiro:

497/7 =71

logo usando a fórmula da soma dos termos da PA:

Sn = < var > \frac{(7+497).71}{2} < /var ><var>

2

(7+497).71

</var>

Sn = 17892

agora é só subtrair as duas somas q vc obtem a soma dos numeros inferiores a 501 e não divisíveis por 7:

Sn = 125250 - 17892 = 107358

Explicação passo-a-passo:

epero te ajudar :)

Perguntas interessantes