Calcule a soma dos dez termos da pg (1,1/2,1/4...)
Soluções para a tarefa
Respondido por
39
EAE manooo,
primeiro identificamos os termos da P.G...

Identificados, podemos achar a soma dos 10, pela fórmula da soma dos n primeiros da P.G.:
![S_n= \dfrac{a_1(q^n-1)}{q-1}\\\\\\
S_{10}= \dfrac{1\cdot\left[\left( \dfrac{1}{2}\right)^{10}-1\right] }{ \dfrac{1}{2}-1 }\\\\
S_{10}= \dfrac{ \dfrac{1}{1.024}-1\ri }{- \dfrac{1}{2} }\\\\\\
S_{10}=- \dfrac{1.023}{1.024}\div\left(- \dfrac{1}{2}\right)~\to~S_{10}=- \dfrac{1.023}{1.024}\cdot\left(- \dfrac{2}{1}\right)~\to~S_{10}= \dfrac{2.046}{1.024}\\\\\\
\Rightarrow \Large\boxed{\boxed{S_{10}= \dfrac{1.023}{512}}} S_n= \dfrac{a_1(q^n-1)}{q-1}\\\\\\
S_{10}= \dfrac{1\cdot\left[\left( \dfrac{1}{2}\right)^{10}-1\right] }{ \dfrac{1}{2}-1 }\\\\
S_{10}= \dfrac{ \dfrac{1}{1.024}-1\ri }{- \dfrac{1}{2} }\\\\\\
S_{10}=- \dfrac{1.023}{1.024}\div\left(- \dfrac{1}{2}\right)~\to~S_{10}=- \dfrac{1.023}{1.024}\cdot\left(- \dfrac{2}{1}\right)~\to~S_{10}= \dfrac{2.046}{1.024}\\\\\\
\Rightarrow \Large\boxed{\boxed{S_{10}= \dfrac{1.023}{512}}}](https://tex.z-dn.net/?f=S_n%3D+%5Cdfrac%7Ba_1%28q%5En-1%29%7D%7Bq-1%7D%5C%5C%5C%5C%5C%5C%0AS_%7B10%7D%3D+%5Cdfrac%7B1%5Ccdot%5Cleft%5B%5Cleft%28+%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5E%7B10%7D-1%5Cright%5D+%7D%7B+%5Cdfrac%7B1%7D%7B2%7D-1+%7D%5C%5C%5C%5C%0AS_%7B10%7D%3D++%5Cdfrac%7B+%5Cdfrac%7B1%7D%7B1.024%7D-1%5Cri+%7D%7B-+%5Cdfrac%7B1%7D%7B2%7D+%7D%5C%5C%5C%5C%5C%5C%0AS_%7B10%7D%3D-+%5Cdfrac%7B1.023%7D%7B1.024%7D%5Cdiv%5Cleft%28-+%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%7E%5Cto%7ES_%7B10%7D%3D-+%5Cdfrac%7B1.023%7D%7B1.024%7D%5Ccdot%5Cleft%28-+%5Cdfrac%7B2%7D%7B1%7D%5Cright%29%7E%5Cto%7ES_%7B10%7D%3D+%5Cdfrac%7B2.046%7D%7B1.024%7D%5C%5C%5C%5C%5C%5C%0A%5CRightarrow+%5CLarge%5Cboxed%7B%5Cboxed%7BS_%7B10%7D%3D+%5Cdfrac%7B1.023%7D%7B512%7D%7D%7D+++++++++)
Tenha ótimos estudos ;D
primeiro identificamos os termos da P.G...
Identificados, podemos achar a soma dos 10, pela fórmula da soma dos n primeiros da P.G.:
Tenha ótimos estudos ;D
korvo:
era sim kkk
Perguntas interessantes
Inglês,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Filosofia,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás