Matemática, perguntado por emanuelyap1210, 8 meses atrás

Calcule a soma dos angulos internos de um octógono. Use a formula S = (n - 2).180º onde n é o numero de lados.

Soluções para a tarefa

Respondido por arthurjonathan020
1

Resposta:

S=(8-2) x 180°

S=6 x 180°

S=1080°

Respondido por Math739
4

A soma dos ângulos internos de um polígono é dada pela fórmula:

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered}  \begin{cases}  \sf S_i = soma \,dos\, \hat{a}ngulos \, internos=? \\  \sf n = n\acute{u}mero \,de\, lados  = 8\end{cases}\end{gathered}$}

Calculando a soma dos ângulos internos de um octógono pela fórmula temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (8 -2) \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 6 \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 1080 {}^{ \circ}  \end{gathered}$}

Portanto, a soma dos ângulos internos de um octógono é:

\Large\displaystyle\text{$\begin{gathered}  \boxed{ \boxed{\bf  1080  {}^{ \circ}  }} \end{gathered}$}

Perguntas interessantes