Calcule a soma dos 8 primeiros termos da P.G. (1,1/2,1/4 ...) ME AJUDEEEEEM <3
Soluções para a tarefa
Respondido por
2
Olá Thays,
pelos dados acima, temos que:
![\begin{cases}a_1= \dfrac{1}{2}\\\\
q= \dfrac{a_2}{a_1} ~\to~q= \dfrac{ \frac{1}{2} }{1}~\to~q= \dfrac{1}{2}\\\\
n=8~termos\end{cases} \begin{cases}a_1= \dfrac{1}{2}\\\\
q= \dfrac{a_2}{a_1} ~\to~q= \dfrac{ \frac{1}{2} }{1}~\to~q= \dfrac{1}{2}\\\\
n=8~termos\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Da_1%3D+%5Cdfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%0Aq%3D+%5Cdfrac%7Ba_2%7D%7Ba_1%7D+%7E%5Cto%7Eq%3D+%5Cdfrac%7B+%5Cfrac%7B1%7D%7B2%7D+%7D%7B1%7D%7E%5Cto%7Eq%3D+%5Cdfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%0An%3D8%7Etermos%5Cend%7Bcases%7D)
Usando a fórmula da soma dos n primeiros termos da P.G.:
![S_n= \dfrac{a_1(q^n-1)}{q-1}\\\\\\
S_{8}= \dfrac{1*( \dfrac{1}{2}^8-1) }{ \dfrac{1}{2}-1 }= \dfrac{ \dfrac{1}{256}-1 }{-\dfrac{1}{2} }= \dfrac{- \dfrac{255}{256} }{- \dfrac{1}{2} }=(- \dfrac{255}{256}):(- \dfrac{1}{2})\\\\\\
~\to~S_8=(-\dfrac{255}{256})* (-\dfrac{2}{1})~\to~S_8= \dfrac{-510}{-256}~\to~\boxed{S_8= \dfrac{255}{128}} S_n= \dfrac{a_1(q^n-1)}{q-1}\\\\\\
S_{8}= \dfrac{1*( \dfrac{1}{2}^8-1) }{ \dfrac{1}{2}-1 }= \dfrac{ \dfrac{1}{256}-1 }{-\dfrac{1}{2} }= \dfrac{- \dfrac{255}{256} }{- \dfrac{1}{2} }=(- \dfrac{255}{256}):(- \dfrac{1}{2})\\\\\\
~\to~S_8=(-\dfrac{255}{256})* (-\dfrac{2}{1})~\to~S_8= \dfrac{-510}{-256}~\to~\boxed{S_8= \dfrac{255}{128}}](https://tex.z-dn.net/?f=S_n%3D+%5Cdfrac%7Ba_1%28q%5En-1%29%7D%7Bq-1%7D%5C%5C%5C%5C%5C%5C%0AS_%7B8%7D%3D+%5Cdfrac%7B1%2A%28+%5Cdfrac%7B1%7D%7B2%7D%5E8-1%29+%7D%7B+%5Cdfrac%7B1%7D%7B2%7D-1+%7D%3D+%5Cdfrac%7B+%5Cdfrac%7B1%7D%7B256%7D-1+%7D%7B-%5Cdfrac%7B1%7D%7B2%7D+%7D%3D+%5Cdfrac%7B-+%5Cdfrac%7B255%7D%7B256%7D+%7D%7B-+%5Cdfrac%7B1%7D%7B2%7D+%7D%3D%28-+%5Cdfrac%7B255%7D%7B256%7D%29%3A%28-+%5Cdfrac%7B1%7D%7B2%7D%29%5C%5C%5C%5C%5C%5C%0A%7E%5Cto%7ES_8%3D%28-%5Cdfrac%7B255%7D%7B256%7D%29%2A+%28-%5Cdfrac%7B2%7D%7B1%7D%29%7E%5Cto%7ES_8%3D+%5Cdfrac%7B-510%7D%7B-256%7D%7E%5Cto%7E%5Cboxed%7BS_8%3D+%5Cdfrac%7B255%7D%7B128%7D%7D+++++++++++)
Espero ter ajudado e tenha ótimos estudos =))
pelos dados acima, temos que:
Usando a fórmula da soma dos n primeiros termos da P.G.:
Espero ter ajudado e tenha ótimos estudos =))
Perguntas interessantes
História,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás