Calcule a soma dos 7 primeiros termos da P.G (7, 21, 63,...)
Soluções para a tarefa
Respondido por
6
Resolução da questão, veja:
Vamos primeiramente coletar alguns dados necessários para a resolução, observemos:
![\mathsf{A_{1}=7}}\\\\\\ \mathsf{A_{2}=21}}}\\\\\\ \mathsf{q=\dfrac{A_{2}}{A_{1}}}}~\to~\mathsf{q=\dfrac{21}{7}}\\\\\\\ \Large\boxed{\boxed{\boxed{\mathbf{q=3}}}}}}}}}}\\\\\\ \mathsf{n=7}}\\\\\\ \mathsf{S_{n}~\textsf{ou}~S_{7}=~?}}}} \mathsf{A_{1}=7}}\\\\\\ \mathsf{A_{2}=21}}}\\\\\\ \mathsf{q=\dfrac{A_{2}}{A_{1}}}}~\to~\mathsf{q=\dfrac{21}{7}}\\\\\\\ \Large\boxed{\boxed{\boxed{\mathbf{q=3}}}}}}}}}}\\\\\\ \mathsf{n=7}}\\\\\\ \mathsf{S_{n}~\textsf{ou}~S_{7}=~?}}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BA_%7B1%7D%3D7%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BA_%7B2%7D%3D21%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bq%3D%5Cdfrac%7BA_%7B2%7D%7D%7BA_%7B1%7D%7D%7D%7D%7E%5Cto%7E%5Cmathsf%7Bq%3D%5Cdfrac%7B21%7D%7B7%7D%7D%5C%5C%5C%5C%5C%5C%5C+%5CLarge%5Cboxed%7B%5Cboxed%7B%5Cboxed%7B%5Cmathbf%7Bq%3D3%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7Bn%3D7%7D%7D%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_%7Bn%7D%7E%5Ctextsf%7Bou%7D%7ES_%7B7%7D%3D%7E%3F%7D%7D%7D%7D)
Pronto, agora vamos aplicar os dados coletados acima na fórmula da soma dos ''n'' termos de uma PG, vejamos:
![\mathsf{S_{n} =\dfrac{A_{1}~\cdot~q^{n}-1}{q-1}}}}}\\\\\\\\ \mathsf{S_{7} =\dfrac{7~\cdot~3^{7}-1}{3-1}}}}}\\\\\\\\ \mathsf{S_{7} =\dfrac{7~\cdot~2187-1}{2}}}}}\\\\\\\\ \mathsf{S_{7} =\dfrac{7~\cdot~2186}{2}}}}}\\\\\\\\\ \mathsf{S_{7} =\dfrac{15302}{2}}\\\\\\\\\ \Large\boxed{\boxed{\boxed{\boxed{\boxed{\mathbf{S_{7}=7651.}}}}}}}}}}}}}}}}}}~~\checkmark}}}}} \mathsf{S_{n} =\dfrac{A_{1}~\cdot~q^{n}-1}{q-1}}}}}\\\\\\\\ \mathsf{S_{7} =\dfrac{7~\cdot~3^{7}-1}{3-1}}}}}\\\\\\\\ \mathsf{S_{7} =\dfrac{7~\cdot~2187-1}{2}}}}}\\\\\\\\ \mathsf{S_{7} =\dfrac{7~\cdot~2186}{2}}}}}\\\\\\\\\ \mathsf{S_{7} =\dfrac{15302}{2}}\\\\\\\\\ \Large\boxed{\boxed{\boxed{\boxed{\boxed{\mathbf{S_{7}=7651.}}}}}}}}}}}}}}}}}}~~\checkmark}}}}}](https://tex.z-dn.net/?f=%5Cmathsf%7BS_%7Bn%7D+%3D%5Cdfrac%7BA_%7B1%7D%7E%5Ccdot%7Eq%5E%7Bn%7D-1%7D%7Bq-1%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_%7B7%7D+%3D%5Cdfrac%7B7%7E%5Ccdot%7E3%5E%7B7%7D-1%7D%7B3-1%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_%7B7%7D+%3D%5Cdfrac%7B7%7E%5Ccdot%7E2187-1%7D%7B2%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_%7B7%7D+%3D%5Cdfrac%7B7%7E%5Ccdot%7E2186%7D%7B2%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C+%5Cmathsf%7BS_%7B7%7D+%3D%5Cdfrac%7B15302%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C+%5CLarge%5Cboxed%7B%5Cboxed%7B%5Cboxed%7B%5Cboxed%7B%5Cboxed%7B%5Cmathbf%7BS_%7B7%7D%3D7651.%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7D%7E%7E%5Ccheckmark%7D%7D%7D%7D%7D)
Ou seja, a soma dos Sete primeiros termos desta PG é igual a 7651.
Espero que te ajude. ^_^
Vamos primeiramente coletar alguns dados necessários para a resolução, observemos:
Pronto, agora vamos aplicar os dados coletados acima na fórmula da soma dos ''n'' termos de uma PG, vejamos:
Ou seja, a soma dos Sete primeiros termos desta PG é igual a 7651.
Espero que te ajude. ^_^
Baldério:
Alguma dúvida quanto a resolução da questão?
Perguntas interessantes
Ed. Física,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Geografia,
1 ano atrás
Inglês,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás