Matemática, perguntado por Vinicius1993, 1 ano atrás

Calcule a soma 1+2+1/2+4+1/4+8+1/8..........+64+1/64

Soluções para a tarefa

Respondido por Usuário anônimo
3

Resposta:

\dfrac{8\,191}{64}

Explicação passo-a-passo:

Temos duas progressões geométricas.

1) Dados:

a_1=1\\q=2\\a_n=64

Somente com esses elementos conseguimos calcular o somatório.

S_n=\dfrac{a_n\cdot q-a_1}{q-1}=\dfrac{64\cdot 2-1}{2-1}=127

2) Dados:

a_1=\dfrac{1}{2}\\q=\dfrac{1}{2}\\a_n=\dfrac{1}{64}

Com esses elementos também conseguimos calcular o somatório:

S_n=\dfrac{a_n\cdot q-a_1}{q-1}=\dfrac{\dfrac{1}{64}\cdot\dfrac{1}{2}-\dfrac{1}{2}}{\dfrac{1}{2}-1}=\dfrac{\dfrac{1-64}{128}}{\dfrac{1-2}{2}}=\dfrac{63}{64}

3) Somando-se tudo:

127+\dfrac{63}{64}=\dfrac{8\,191}{64}

Espero ter ajudado!

Perguntas interessantes