Calcule a seguinte soma S = 1 + 3/2 + 5/4 + 7/8 + ...
Soluções para a tarefa
Resposta:
S = 1 + 3/2 + 5/4 + 7/8 + ...
***3/2=1/2+1/2+1/2
***5/4=1/4+1/4+1/4+1/4+1/4
***7/8=1/8+1/8+1/8+1/8+1/8+1/8+1/8
S =1 +(1/2+1/2+1/2)+(1/4+1/4+1/4+1/4+1/4) + (1/8+1/8+1/8+1/8+1/8+1/8+1/8)+..
Arrumando
S=(1+1/2+1/4+1/8+...)+(1/2+1/4+....)+(1/2+1/4+...)+(1/4+1/8+....)+
(1/4+1/8+....)+......
Usando Sn=a1/(1-q)
S=1/(1-1/2) +(1/2)/(1-1/2) + (1/2)/(1-1/2)+....
S= 2 + 1 + 1 + 1/2 +1/2+....
S=2+ 2 +1+1/2+1/8+....
S=5 +(1/2)/(1-1/2)
S=5+1 =6
Resposta: S = 6
Explicação passo-a-passo:
A soma S é dada por:
S = 1 + 3/2 + 5/4 + 7/8 + 9/16 + 11/32 + 13/64 + ... + ...
Reescrevendo as parcelas de S, obteremos:
1 = 2 - 1
3/2 = 5/2 - 2/2
5/4 = 7/4 - 2/4
7/8 = 9/8 - 2/8
9/16 = 11/16 - 2/16
...
...
...
Logo:
S = 1 + 3/2 + 5/4 + 7/8 + 9/16 + ... + ... + ... =>
S = (2 - 1) + 0 + (5/2 - 2/2) + (7/4 - 2/4) + (9/8 - 2/8) + (11/16 - 2/16) + ... + ... + ... =>
S = 2 - 1 + 3 - 3 + (5/2 + 7/4 + 9/8 + 11/16 + ... + ... + ...) - 2/2 - 2/4 - 2/8 - 2/16 - ... - ... - ... =>
S = (2 + 3 + 5/2 + 7/4 + 9/8 + 11/16 + ... + ... + ...) - 1 - 3 - 2(1/2 + 1/4 + 1/8 + 1/16 + ... + ... + ...) =>
S = 2(1 + 3/2 + 5/4 + 7/8 + 9/16 + 11/32 + ... + ... + ...) - 4 - 2(1/2 + 1/4 + 1/8 + 1/16 + ... + ... + ...) =>
S = 2S - 4 - 2[(1/2)/(2/2 - 1/2)] =>
S = 2S - 4 - 2[(1/2)/(1/2)] =>
S = 2S - 4 - 2 =>
S = 2S - 6 =>
S = 6
Abraços!