Matemática, perguntado por juniorhz, 10 meses atrás

Calcule a seguinte integral indefinida

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
2

\displaystyle\mathsf{\int\sqrt{1-x^4}x^3\,dx=-\dfrac{1}{4}\int\sqrt{1-x^4}-4x^3\,dx}

faça

\mathsf{u=1-x^4\implies~du=-4x^3~dx}

\displaystyle\mathsf{-\dfrac{1}{4}\int\sqrt{1-x^4}-4x^3\,dx=-\dfrac{1}{4}\int\sqrt{u}du=-\dfrac{1}{4}\cdot\dfrac{2}{3}u^{\frac{3}{2}}+k}\\\displaystyle\mathsf{\int\sqrt{1-x^4}x^3\,dx=-\dfrac{1}{6}(1-x^4)^{\frac{3}{2}}+k}

Perguntas interessantes