Calcule a pressão total de uma mistura gasosa formada por 3 mol de um gás A e 2 mol de um gás B, considerando que a temperatura final é de 300K e o volume é de 15L
a) 8,2 atm
b) 3,28 atm
c) 4,92 atm
d) 9,84 atm
e) 1,84 atm
Por favor favor, expliquem como se faz :)
Soluções para a tarefa
Respondido por
162
Vamos lá
Utilizando a fórmula de gases ideias PV=nRT
onde P é a pressão
V é o volume
n é a quantidade de matéria de gás (mol)
R é uma constante= 0,08206 L · atm · K−1 · mol−1
e T é a temperatura
Agora vamos isolar o P.
P=nRT/V
Segundo Dalton a pressão total é dada pela pressão parcial de cada gás, ou seja, vamos ter que fazer essa continha marota 2 vezes e somar o resultado
P1=3*0,08206*300/15=4,92atm
P2=2*0,08206*300/15=3,28atm
Agora somando as pressões Pt=4,92+3,28=8,2atm
Alternativa A :)
Utilizando a fórmula de gases ideias PV=nRT
onde P é a pressão
V é o volume
n é a quantidade de matéria de gás (mol)
R é uma constante= 0,08206 L · atm · K−1 · mol−1
e T é a temperatura
Agora vamos isolar o P.
P=nRT/V
Segundo Dalton a pressão total é dada pela pressão parcial de cada gás, ou seja, vamos ter que fazer essa continha marota 2 vezes e somar o resultado
P1=3*0,08206*300/15=4,92atm
P2=2*0,08206*300/15=3,28atm
Agora somando as pressões Pt=4,92+3,28=8,2atm
Alternativa A :)
BreOc:
Obrigada :3
Respondido por
91
a) 8,2 atm
A pressão é definida como a força dividida pela área.
No caso da pressão interna de um gás, ela corresponde à força de impacto das moléculas com a superfície interna do recipiente dividida pela área dessa superfície.
Utilizando a Equação de Clapeyron para os gases ideais, podemos calcular as pressões parciais de cada um dos gases da mistura:
P . V = n . R . T
A pressão de cada um dos gases dentro da mistura será dada por:
PA . V = nART
PB . V = nBRT
Assim, a pressão total da mistura será dada por:
(PA + PB). V = (nA + nB) . R . T
Ptotal . 15 = (3+2) . 0,082 . 300
Ptotal = 123/15
Ptotal = 8,2 atm
Mais sobre o assunto em:
brainly.com.br/tarefa/13978276
Anexos:
Perguntas interessantes
Matemática,
10 meses atrás
Ed. Física,
10 meses atrás
Matemática,
10 meses atrás
Biologia,
1 ano atrás
Espanhol,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás