calcule a medida de cada um dos segmentos de reta x,y e z determinados sobre a reta b me ajudem pfvvv
Soluções para a tarefa
Resposta:
4
18 = x
27
8x 41 = 5 × 4
8x 161 = 2
x = 18
216
2cmx = 1
6
4 = y
12
y 24 = 1 × 6
y 24 = 7
y = 4
72
8cmy = 1
4cmx + y + z = 5
2 8 4cm1 + 1 + z = 5
4 0z = 5 \u2212 3
4cmz = 2
___________
Explicação passo-a-passo:
bons estudos
Os valores de x, y e z são, respectivamente, 6, 9 e 12.
Esta questão envolve conceitos de retas paralelas cortadas por retas transversais.
Utilizando o Teorema de Tales, podemos relacionar cada segmento de forma proporcional para encontrar os valores de x, y e z. O segmento de 4 cm é proporcional a x assim como o segmento de 6 cm é proporcional a y assim como o segmento de 8 cm é proporcional a z, assim escrevemos:
4/6 = x/y
6/8 = y/z
4/8 = x/z
Da mesma forma, as somas dos segmentos são proporcionais entre si:
(4 + 6 + 8)/(x + y + z)
Das igualdades, temos que:
y = (3/2)x
z = (4/3)y
z = 2x
Substituindo estes valores, temos:
4/6 = 18/(x + y + z)
4(x + (3/2)x + 2x) = 108
9x/2 = 27
x = 6
y = 9
z = 12
Leia mais em:
https://brainly.com.br/tarefa/5638618
https://brainly.com.br/tarefa/28479639
https://brainly.com.br/tarefa/1502349