Calcule:
a) log 2 na base raiz de 2
b) log 0,1
C) log 16 na base 1/4
Soluções para a tarefa
Respondido por
0
a) Essa você pode fazer de duas formas:
![\log_{\sqrt{2}} 2\Rightarrow \left(\sqrt{2}\right)^{x}=2 \Rightarrow \sqrt{2^{x}}=2\Rightarrow \left(\sqrt{2^{x}}\right)^{2}=2^{2}\Rightarrow 2^{x}=2^{2}\Rightarrow
x=2 \log_{\sqrt{2}} 2\Rightarrow \left(\sqrt{2}\right)^{x}=2 \Rightarrow \sqrt{2^{x}}=2\Rightarrow \left(\sqrt{2^{x}}\right)^{2}=2^{2}\Rightarrow 2^{x}=2^{2}\Rightarrow
x=2](https://tex.z-dn.net/?f=%5Clog_%7B%5Csqrt%7B2%7D%7D+2%5CRightarrow+%5Cleft%28%5Csqrt%7B2%7D%5Cright%29%5E%7Bx%7D%3D2+%5CRightarrow+%5Csqrt%7B2%5E%7Bx%7D%7D%3D2%5CRightarrow+%5Cleft%28%5Csqrt%7B2%5E%7Bx%7D%7D%5Cright%29%5E%7B2%7D%3D2%5E%7B2%7D%5CRightarrow+2%5E%7Bx%7D%3D2%5E%7B2%7D%5CRightarrow+%0Ax%3D2)
Ou (lembrando que √2 = 2^1/2):
![\log_{\sqrt{2}} 2\Rightarrow \log_{2^{\frac{1}{2}}} 2\Rightarrow \left(2^{\frac{1}{2}}\right)^{x}=2\Rightarrow 2^{\frac{x}{2}}=2\Rightarrow \dfrac{x}{2}=1\Rightarrow x=2 \log_{\sqrt{2}} 2\Rightarrow \log_{2^{\frac{1}{2}}} 2\Rightarrow \left(2^{\frac{1}{2}}\right)^{x}=2\Rightarrow 2^{\frac{x}{2}}=2\Rightarrow \dfrac{x}{2}=1\Rightarrow x=2](https://tex.z-dn.net/?f=%5Clog_%7B%5Csqrt%7B2%7D%7D+2%5CRightarrow+%5Clog_%7B2%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D+2%5CRightarrow++%5Cleft%282%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cright%29%5E%7Bx%7D%3D2%5CRightarrow+2%5E%7B%5Cfrac%7Bx%7D%7B2%7D%7D%3D2%5CRightarrow+%5Cdfrac%7Bx%7D%7B2%7D%3D1%5CRightarrow+x%3D2)
b)
![\log 0,1=\log \frac{1}{10}\Rightarrow 10^{x}=\dfrac{1}{10}\Rightarrow 10^{x}=10^{-1}\Rightarrow x=-1 \log 0,1=\log \frac{1}{10}\Rightarrow 10^{x}=\dfrac{1}{10}\Rightarrow 10^{x}=10^{-1}\Rightarrow x=-1](https://tex.z-dn.net/?f=%5Clog+0%2C1%3D%5Clog+%5Cfrac%7B1%7D%7B10%7D%5CRightarrow+10%5E%7Bx%7D%3D%5Cdfrac%7B1%7D%7B10%7D%5CRightarrow+10%5E%7Bx%7D%3D10%5E%7B-1%7D%5CRightarrow+x%3D-1)
Ou
![\log 0,1=\log \frac{1}{10}\Rightarrow \log 1-\log10\Rightarrow 0-1=-1 \log 0,1=\log \frac{1}{10}\Rightarrow \log 1-\log10\Rightarrow 0-1=-1](https://tex.z-dn.net/?f=%5Clog+0%2C1%3D%5Clog+%5Cfrac%7B1%7D%7B10%7D%5CRightarrow+%5Clog+1-%5Clog10%5CRightarrow+0-1%3D-1)
c)
![log_{\frac{1}{4}} 16 \Rightarrow \left(\dfrac{1}{4}\right)^{x}=16 \Rightarrow \left(4^{-1}\right)^{x}=4^{2}\Rightarrow 4^{-x}=4^{2} \Rightarrow\\ \\ \\ -x=2\Rightarrow x=-2 log_{\frac{1}{4}} 16 \Rightarrow \left(\dfrac{1}{4}\right)^{x}=16 \Rightarrow \left(4^{-1}\right)^{x}=4^{2}\Rightarrow 4^{-x}=4^{2} \Rightarrow\\ \\ \\ -x=2\Rightarrow x=-2](https://tex.z-dn.net/?f=log_%7B%5Cfrac%7B1%7D%7B4%7D%7D+16+%5CRightarrow+%5Cleft%28%5Cdfrac%7B1%7D%7B4%7D%5Cright%29%5E%7Bx%7D%3D16+%5CRightarrow+%5Cleft%284%5E%7B-1%7D%5Cright%29%5E%7Bx%7D%3D4%5E%7B2%7D%5CRightarrow+4%5E%7B-x%7D%3D4%5E%7B2%7D+%5CRightarrow%5C%5C+%5C%5C+%5C%5C+-x%3D2%5CRightarrow+x%3D-2)
Ou (lembrando que √2 = 2^1/2):
b)
Ou
c)
Perguntas interessantes
Matemática,
11 meses atrás
Inglês,
11 meses atrás
Música,
11 meses atrás
Inglês,
1 ano atrás
Física,
1 ano atrás