calcule a integral x^5 ln x dx por partes
Soluções para a tarefa
Respondido por
0
Boa noite Ana!
Solução!
![\boxed{ \int(udv)=uv-\int(vdu) } \boxed{ \int(udv)=uv-\int(vdu) }](https://tex.z-dn.net/?f=%5Cboxed%7B+%5Cint%28udv%29%3Duv-%5Cint%28vdu%29+%7D)
![v= x^{6}~~~~~~~~u=ln(x)\\\\
dv=6x^{5}~~~~~~du= \dfrac{1}{x} v= x^{6}~~~~~~~~u=ln(x)\\\\
dv=6x^{5}~~~~~~du= \dfrac{1}{x}](https://tex.z-dn.net/?f=v%3D+x%5E%7B6%7D%7E%7E%7E%7E%7E%7E%7E%7Eu%3Dln%28x%29%5C%5C%5C%5C%0Adv%3D6x%5E%7B5%7D%7E%7E%7E%7E%7E%7Edu%3D+%5Cdfrac%7B1%7D%7Bx%7D+++)
![\int(ln(x).6 x^{5})dx=ln(x). x^{6} -\int(x^{6}. \frac{1}{x})dx\\\\\\\
\int(ln(x).6 x^{5})dx=ln(x). x^{6}- \int(x^{5})dx\\\\\\\
\int(ln(x).6 x^{5})dx= \frac{1}{6}[ ln(x). x^{6}- \frac{ x^{6} }{6}]+c \\\\\\\\\\\
\boxed{Resposta: \dfrac{1}{6}ln(x). x^{6}- \dfrac{ x^{6} }{6}+c} \int(ln(x).6 x^{5})dx=ln(x). x^{6} -\int(x^{6}. \frac{1}{x})dx\\\\\\\
\int(ln(x).6 x^{5})dx=ln(x). x^{6}- \int(x^{5})dx\\\\\\\
\int(ln(x).6 x^{5})dx= \frac{1}{6}[ ln(x). x^{6}- \frac{ x^{6} }{6}]+c \\\\\\\\\\\
\boxed{Resposta: \dfrac{1}{6}ln(x). x^{6}- \dfrac{ x^{6} }{6}+c}](https://tex.z-dn.net/?f=%5Cint%28ln%28x%29.6+x%5E%7B5%7D%29dx%3Dln%28x%29.+x%5E%7B6%7D+-%5Cint%28x%5E%7B6%7D.+%5Cfrac%7B1%7D%7Bx%7D%29dx%5C%5C%5C%5C%5C%5C%5C%0A%5Cint%28ln%28x%29.6+x%5E%7B5%7D%29dx%3Dln%28x%29.+x%5E%7B6%7D-+%5Cint%28x%5E%7B5%7D%29dx%5C%5C%5C%5C%5C%5C%5C+%0A%5Cint%28ln%28x%29.6+x%5E%7B5%7D%29dx%3D+%5Cfrac%7B1%7D%7B6%7D%5B+ln%28x%29.+x%5E%7B6%7D-+%5Cfrac%7B+x%5E%7B6%7D+%7D%7B6%7D%5D%2Bc+%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%0A%5Cboxed%7BResposta%3A+++%5Cdfrac%7B1%7D%7B6%7Dln%28x%29.+x%5E%7B6%7D-+%5Cdfrac%7B+x%5E%7B6%7D+%7D%7B6%7D%2Bc%7D)
Boa noite!
Bons estudos!
Solução!
Boa noite!
Bons estudos!
Perguntas interessantes
História,
1 ano atrás
Música,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Filosofia,
1 ano atrás