Calcule a integral: x^2 sen3x dx
Soluções para a tarefa
X³/3.-cos(x).3x²/2
∫x² Sen [3x] dx
➊ Essa integral se resolve por partes:
Formula:
∫u dv = u v - ∫v du
Onde:
u = x² : : : : : : : : dv = Sen [3x]
du = 2x dx : : : : v = - [1/3] Cos [3x]
➋ Aplicamos a Formula:
∫u dv = u v - ∫v du
∫x² Sen [3x]dx = - [1/3] x² Cos [3x] - ∫ - [2/3] x Cos [3x] dx
∫x² Sen [3x]dx = - [1/3] x² Cos [3x] + [2/3] ( ∫x Cos [3x] dx )
➌ voltamos a aplicar a Formula:
Onde:
u = x : : : : : : dv = Cos [3x]
du = dx : : : : v = [1/3] Sen [3x]
∫u dv = u v - ∫v du
∫x² Sen [3x]dx = - [1/3] x² Cos [3x] + [2/3]( [1/3]x sen [3x] - ∫ [1/3] Sen [3x] dx )
➍ Integramos, desenvolvemos oque resta
∫x² Sen [3x]dx = - [1/3] x² Cos [3x] + [2/3] ( [1/3] x sen [3x] + [1/3] [1/3] Cos [3x] )
∫x² Sen [3x]dx = - [1/3] x² Cos [3x] + [2/9]x sen [3x] + [2/27] Cos [3x] + C
Este é o resultado
======================================...
- [1/3] x² Cos [3x] + [2/9]x sen [3x] + [2/27] Cos [3x] + C
======================================...