Matemática, perguntado por oliveiraengelet, 1 ano atrás

Calcule a integral tripla com fundo preto:

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
1
Boa noite Oliveira!

Solução!

\displaystyle\int\displaystyle\int\int12xy^{2}z^{3}dv\\\~~~~ _{G}

Intervalos!\\\\\\
-1 \leq x \leq 2~~,0 \leq y \leq 3~~,0 \leq z \leq 2


\displaystyle\int_{-1} ^{2}  \displaystyle\int_{0}^{3}  \int_{0}^{2}  12xy^{2}z^{3}dzdydx\\\\\\\
\displaystyle\int_{-1} ^{2}  \displaystyle\int_{0}^{3}12xy^{2}  \bigg[z^{3}\bigg]_{0} ^{2}dydx\\\\\\\\
\displaystyle\int_{-1} ^{2}  \displaystyle\int_{0}^{3}12xy^{2}  \bigg[ \frac{z ^{4} }{4} \bigg]_{0} ^{2}dydx\\\\\\\\  
 \dfrac{1}{4}\displaystyle\int_{-1} ^{2}  \displaystyle\int_{0}^{3}12xy^{2}  \bigg[ ( 2)^{4} \bigg]dydx


 \dfrac{1}{4}\displaystyle\int_{-1} ^{2}  \displaystyle\int_{0}^{3}12xy^{2}  \bigg[ 16 \bigg]dydx\\\\\\\\

  \dfrac{1}{4}\displaystyle\int_{-1} ^{2}  \displaystyle\int_{0}^{3}192xy^{2}  dydx\\\\\\\\ 

  \dfrac{1}{4}\displaystyle\int_{-1} ^{2}192x\bigg[y^{2}\bigg]_{0}^{3}    dx\\\\\\\\ 
 \dfrac{1}{4}\displaystyle\int_{-1} ^{2}192x\bigg[ \frac{y^{3} }{3} \bigg]_{0}^{3}    dx\\\\\\\\

 \dfrac{1}{4}\displaystyle\int_{-1} ^{2}192x\bigg[ \frac{(3)^{3} }{3} \bigg]   dx


\dfrac{1}{4}\displaystyle\int_{-1} ^{2}192x\bigg[ 9\bigg]   dx\\\\\\\\     \dfrac{1}{4}\displaystyle\int_{-1} ^{2}1728x dx\\\\\\\\
 \dfrac{1}{4}\displaystyle\int_{-1} ^{2}192x\bigg[ 9\bigg]   dx\\\\\\\\     \dfrac{1}{4}.1728\bigg[x\bigg]_{-1}^{2}\\\\\\\\
 \dfrac{1}{4}.1728\bigg[ \frac{ x^{2} }{2} \bigg]_{-1}^{2}\\\\\\\\
 \dfrac{1}{4}.1728. \dfrac{1}{2} \bigg[ (2)^{2}- (-1)^{2}   \bigg]\\\\\\\\
 \dfrac{1}{4}.1728. \dfrac{1}{2} \bigg[ 4- 1  \bigg]


 \dfrac{1}{4}.1728. \dfrac{1}{2} \bigg[ 3 \bigg]\\\\\\\\
 \dfrac{1\times1728\times3}{8}\\\\\\
 \dfrac{5184}{8}=648



\boxed{Resposta:~~\displaystyle\int_{-1} ^{2} \displaystyle\int_{0}^{3} \int_{0}^{2} 12xy^{2}z^{3}dzdydx=648}

Boa noite!

Bons estudos!


Perguntas interessantes