Matemática, perguntado por LucasJairo, 1 ano atrás

Calcule a integral por partes

Anexos:

Lukyo: ∫ x e^(5x) dx

Soluções para a tarefa

Respondido por trindadde
1
Olá!
  
    Sejam   u=x,\;\; dv=e^{5x}  . Temos:

\displaystyle\int{u\;dv}=uv-\displaystyle\int{v\;du} \\ \\
\displaystyle\int{x\cdot e^{5x}}=x\cdot \dfrac{e^{5x}}{5}-\displaystyle
\int{\dfrac{e^{5x}}{5}\cdot 1}dx=x\cdot \dfrac{e^{5x}}{5}-\dfrac{1}{5}\cdot
\dfrac{e^{5x}}{5}+k,\;\; k\in\mathbb{R} = \\ \\= \dfrac{e^{5x}}{5}\cdot
\left(x-\dfrac{1}{5}\right)+k,\;\; k\in\mathbb{R}

Bons estudos!

Respondido por Usuário anônimo
0

\sf \displaystyle \int \:x\cdot e^{5x}~dx\\\\\\=\int \frac{e^uu}{25}du\\\\\\=\frac{1}{25}\cdot \int \:e^uudu\\\\\\=\frac{1}{25}\left(e^uu-\int \:e^udu\right)\\\\\\=\frac{1}{25}\left(e^uu-e^u\right)\\\\\\=\frac{1}{25}\left(e^{5x}\cdot \:5x-e^{5x}\right)\\\\\\\to \boxed{\sf =\frac{1}{25}\left(e^{5x}\cdot \:5x-e^{5x}\right)+C}

Perguntas interessantes