Matemática, perguntado por superaks, 1 ano atrás

Calcule a integral indefinida

\mathsf{\displaystyle\int~\sqrt{-x^2+4x+5}~dx}

Por favor responder de forma detalhada.

Soluções para a tarefa

Respondido por ArthurPDC
2
É dada a integral indefinida:

\displaystyle
I=\int\sqrt{-x^2+4x+5}\,dx

Vamos desenvolver a expressão que está dentro da raiz quadrada:

-x^2+4x+5=-x^2+4x-4+4+5\\\\
-x^2+4x+5=-(x-2)^2+9\\\\
-x^2+4x+5=9-(x-2)^2\\\\
-x^2+4x+5=9\left(1-\left(\dfrac{x-2}{3}\right)^2\right)

Desse modo, a integral que queremos calcular equivale a:

\displaystyle I=\int\sqrt{-x^2+4x+5}\,dx\\\\
 I=\int\sqrt{9\left(1-\left(\dfrac{x-2}{3}\right)^2\right)}\,dx\\\\
 I=\int3\sqrt{1-\left(\dfrac{x-2}{3}\right)^2}\,dx

O termo dentro da raiz quadrada deve ser não-negativo. Logo:

1-\left(\dfrac{x-2}{3}\right)^2\ge0\\\\
\left(\dfrac{x-2}{3}\right)^2\le1\\\\
-1\le \dfrac{x-2}{3}\le1

Pelo intervalo obtido, podemos fazer a seguinte substituição:

\dfrac{x-2}{3}=\sin(\theta)\\\\
x=3\sin(\theta)+2\\\\
dx=3\cos(\theta)\,d\theta

Utilizando na integral dada:

\displaystyle
I=\int3\sqrt{1-\left(\dfrac{x-2}{3}\right)^2}\,dx\\\\
I=3\int\sqrt{1-\sin^2(\theta)}\,3\cos(\theta)\,d\theta\\\\
I=9\int \cos^2(\theta)\,d\theta

Pelas relações trigonométricas conhecidas:
\cos(2\theta)=2\cos^2(\theta)-1\Longrightarrow \cos^2(\theta)=\dfrac{1}{2}\cos(2\theta)+\dfrac{1}{2}

Aplicando em I:

\displaystyle
I=9\int \cos^2(\theta)\,d\theta\\\\
I=9\int\left(\dfrac{1}{2}\cos(2\theta)+\dfrac{1}{2}\right)\,d\theta\\\\
I=\dfrac{9}{2}\int \cos(2\theta)\,d\theta+\dfrac{9}{2}\int d\theta\\\\
I=\dfrac{9}{2}\cdot\dfrac{1}{2}\sin(2\theta)+\dfrac{9}{2}\theta+C\\\\
I=\dfrac{9}{4}\sin(2\theta)+\dfrac{9}{2}\theta+C

Voltando à variável x:

I=\dfrac{9}{4}\sin(2\theta)+\dfrac{9}{2}\theta+C\\\\
I=\dfrac{9}{4}\cdot2\cdot\sin(\theta)\cdot\cos(\theta)+\dfrac{9}{2}\theta+C\\\\
I=\dfrac{9}{2}\sin(\theta)\cdot\cos(\theta)+\dfrac{9}{2}\theta+C\\\\
I=\dfrac{9}{2}\cdot\left(\dfrac{x-2}{3}\right)\cdot\cos\left(\arcsin\left(\dfrac{x-2}{3}\right)\right)+\dfrac{9}{2}\arcsin\left(\dfrac{x-2}{3}\right)+C\\\\
I=\dfrac{3}{2}(x-2)\cdot\sqrt{1-\left(\dfrac{x-2}{3}\right)^2}+\dfrac{9}{2}\arcsin\left(\dfrac{x-2}{3}\right)+C\\\\
I=\dfrac{3}{2}(x-2)\cdot\sqrt{1-\left(\dfrac{x^2-4x-4}{9}\right)}+\dfrac{9}{2}\arcsin\left(\dfrac{x-2}{3}\right)+C\\\\
I=\dfrac{3}{2}(x-2)\cdot\dfrac{1}{3}\sqrt{9-(x^2-4x-4)}+\dfrac{9}{2}\arcsin\left(\dfrac{x-2}{3}\right)+C\\\\
I=\dfrac{1}{2}(x-2)\sqrt{-x^2+4x+5}+\dfrac{9}{2}\arcsin\left(\dfrac{x-2}{3}\right)+C\\\\\
\displaystyle
\boxed{\int\sqrt{-x^2+4x+5}\,dx=\dfrac{x-2}{2}\sqrt{-x^2+4x+5}+\dfrac{9}{2}\arcsin\left(\dfrac{x-2}{3}\right)\!+\!C}

superaks: Ótima resposta! Muito obrigado!
ArthurPDC: De nada!
Perguntas interessantes