Calcule a Integral Indefinida
Lukyo:
Curiosidade: Se o denominador fosse esse mesmo (x² - 2)^(1/2), a integral sairia por outro tipo de substituição trigonométrica. Você usaria x = (√2) sec θ, ou poderia recorrer à substituição trigonométrica hiperbólica: x = (√2) cosh t.
Soluções para a tarefa
Respondido por
1
Integral por substituição trigonométrica. Lembrando que a substituição adequada nesse caso é:
![\sqrt{a^{2}-x^{2}} \\ \\ x=a \sin \theta \sqrt{a^{2}-x^{2}} \\ \\ x=a \sin \theta](https://tex.z-dn.net/?f=%5Csqrt%7Ba%5E%7B2%7D-x%5E%7B2%7D%7D+%5C%5C+%5C%5C+x%3Da+%5Csin+%5Ctheta)
Então temos:
![\displaystyle \int \frac{1}{x^{4} \sqrt{2-x^{2}}} \, dx \\ \\ \\ \int \frac{1}{x^{4} \sqrt{(\sqrt{2})^{2}-x^{2}}} \, dx \\ \\ \\ x=\sqrt{2} \sin \theta \\ \\ dx=\sqrt{2} \cos \theta \, d \theta \\ \\ \\ \int \frac{1}{(\sqrt{2} \sin \theta)^{4} \sqrt{2-(\sqrt{2} \sin \theta)^{2}}} \, \cdot \sqrt{2} \cos \theta \, d \theta \\ \\ \\ \int \frac{\sqrt{2} \cos \theta}{4 \sin^{4} \theta \sqrt{2-2 \sin^{2} \theta}} \, d \theta \displaystyle \int \frac{1}{x^{4} \sqrt{2-x^{2}}} \, dx \\ \\ \\ \int \frac{1}{x^{4} \sqrt{(\sqrt{2})^{2}-x^{2}}} \, dx \\ \\ \\ x=\sqrt{2} \sin \theta \\ \\ dx=\sqrt{2} \cos \theta \, d \theta \\ \\ \\ \int \frac{1}{(\sqrt{2} \sin \theta)^{4} \sqrt{2-(\sqrt{2} \sin \theta)^{2}}} \, \cdot \sqrt{2} \cos \theta \, d \theta \\ \\ \\ \int \frac{\sqrt{2} \cos \theta}{4 \sin^{4} \theta \sqrt{2-2 \sin^{2} \theta}} \, d \theta](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Cfrac%7B1%7D%7Bx%5E%7B4%7D+%5Csqrt%7B2-x%5E%7B2%7D%7D%7D+%5C%2C+dx+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Cfrac%7B1%7D%7Bx%5E%7B4%7D+%5Csqrt%7B%28%5Csqrt%7B2%7D%29%5E%7B2%7D-x%5E%7B2%7D%7D%7D+%5C%2C+dx+%5C%5C+%5C%5C+%5C%5C+x%3D%5Csqrt%7B2%7D+%5Csin+%5Ctheta+%5C%5C+%5C%5C+dx%3D%5Csqrt%7B2%7D+%5Ccos+%5Ctheta+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Cfrac%7B1%7D%7B%28%5Csqrt%7B2%7D+%5Csin+%5Ctheta%29%5E%7B4%7D+%5Csqrt%7B2-%28%5Csqrt%7B2%7D+%5Csin+%5Ctheta%29%5E%7B2%7D%7D%7D+%5C%2C+%5Ccdot+%5Csqrt%7B2%7D+%5Ccos+%5Ctheta+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Cfrac%7B%5Csqrt%7B2%7D+%5Ccos+%5Ctheta%7D%7B4+%5Csin%5E%7B4%7D+%5Ctheta+%5Csqrt%7B2-2+%5Csin%5E%7B2%7D+%5Ctheta%7D%7D+%5C%2C+d+%5Ctheta)
![\displaystyle \int \frac{\sqrt{2} \cos \theta}{4 \sin^{4} \theta \sqrt{2(1-\sin^{2} \theta)}} \, d \theta \displaystyle \int \frac{\sqrt{2} \cos \theta}{4 \sin^{4} \theta \sqrt{2(1-\sin^{2} \theta)}} \, d \theta](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Cfrac%7B%5Csqrt%7B2%7D+%5Ccos+%5Ctheta%7D%7B4+%5Csin%5E%7B4%7D+%5Ctheta+%5Csqrt%7B2%281-%5Csin%5E%7B2%7D+%5Ctheta%29%7D%7D+%5C%2C+d+%5Ctheta)
Considerando a identidade trigonométrica sin²θ + cos²θ = 1, então:
![\cos^{2} \theta=1-\sin^{2} \theta \cos^{2} \theta=1-\sin^{2} \theta](https://tex.z-dn.net/?f=%5Ccos%5E%7B2%7D+%5Ctheta%3D1-%5Csin%5E%7B2%7D+%5Ctheta)
Daí temos:
![\displaystyle \int \frac{\sqrt{2} \cos \theta}{4 \sin^{4} \theta \sqrt{2\cos^{2} \theta}} \, d \theta \\ \\ \\ \int \frac{\sqrt{2}\cos \theta}{4\sin^{4} \theta \cdot \sqrt{2}\cos \theta} \, d \theta \\ \\ \\ \int \frac{1}{4\sin^{4} \theta} \, d \theta \\ \\ \\ \frac{1}{4} \cdot \int \frac{1}{\sin^{4} \theta} \, d \theta \\ \\ \\ \frac{1}{4} \cdot \int \csc ^{4} \theta \displaystyle \int \frac{\sqrt{2} \cos \theta}{4 \sin^{4} \theta \sqrt{2\cos^{2} \theta}} \, d \theta \\ \\ \\ \int \frac{\sqrt{2}\cos \theta}{4\sin^{4} \theta \cdot \sqrt{2}\cos \theta} \, d \theta \\ \\ \\ \int \frac{1}{4\sin^{4} \theta} \, d \theta \\ \\ \\ \frac{1}{4} \cdot \int \frac{1}{\sin^{4} \theta} \, d \theta \\ \\ \\ \frac{1}{4} \cdot \int \csc ^{4} \theta](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Cfrac%7B%5Csqrt%7B2%7D+%5Ccos+%5Ctheta%7D%7B4+%5Csin%5E%7B4%7D+%5Ctheta+%5Csqrt%7B2%5Ccos%5E%7B2%7D+%5Ctheta%7D%7D+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Cfrac%7B%5Csqrt%7B2%7D%5Ccos+%5Ctheta%7D%7B4%5Csin%5E%7B4%7D+%5Ctheta+%5Ccdot+%5Csqrt%7B2%7D%5Ccos+%5Ctheta%7D+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Cfrac%7B1%7D%7B4%5Csin%5E%7B4%7D+%5Ctheta%7D+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B4%7D+%5Ccdot+%5Cint+%5Cfrac%7B1%7D%7B%5Csin%5E%7B4%7D+%5Ctheta%7D+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cfrac%7B1%7D%7B4%7D+%5Ccdot+%5Cint+%5Ccsc+%5E%7B4%7D+%5Ctheta)
Considere a fórmula para a integral por parte da função cossecante elevada à enésima potência:
![\displaystyle \int \csc^{n} u \, du = \frac{-1}{n-1}\cot u \cdot \csc^{n-2} u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du \displaystyle \int \csc^{n} u \, du = \frac{-1}{n-1}\cot u \cdot \csc^{n-2} u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Ccsc%5E%7Bn%7D+u+%5C%2C+du+%3D+%5Cfrac%7B-1%7D%7Bn-1%7D%5Ccot+u+%5Ccdot+%5Ccsc%5E%7Bn-2%7D+u+%2B+%5Cfrac%7Bn-2%7D%7Bn-1%7D+%5Cint+%5Ccsc%5E%7Bn-2%7D+u+%5C%2C+du)
Aplicando-a:
![\displaystyle \int \csc^{4} \theta \, d \theta = \frac{-1}{4-1}\cot \theta \cdot \csc^{4-2} \theta + \frac{4-2}{4-1} \int \csc^{4-2} \theta \, d \theta \\ \\ \\ \int \csc^{4} \theta \, d \theta = \frac{-1}{3}\cot \theta \cdot \csc^{2} \theta + \frac{2}{3} \int \csc^{2} \theta \, d \theta \displaystyle \int \csc^{4} \theta \, d \theta = \frac{-1}{4-1}\cot \theta \cdot \csc^{4-2} \theta + \frac{4-2}{4-1} \int \csc^{4-2} \theta \, d \theta \\ \\ \\ \int \csc^{4} \theta \, d \theta = \frac{-1}{3}\cot \theta \cdot \csc^{2} \theta + \frac{2}{3} \int \csc^{2} \theta \, d \theta](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Ccsc%5E%7B4%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%3D+%5Cfrac%7B-1%7D%7B4-1%7D%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B4-2%7D+%5Ctheta+%2B+%5Cfrac%7B4-2%7D%7B4-1%7D+%5Cint+%5Ccsc%5E%7B4-2%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Ccsc%5E%7B4%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%3D+%5Cfrac%7B-1%7D%7B3%7D%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B2%7D+%5Ctheta+%2B+%5Cfrac%7B2%7D%7B3%7D+%5Cint+%5Ccsc%5E%7B2%7D+%5Ctheta+%5C%2C+d+%5Ctheta)
A integral de csc² θ:
![\displaystyle \int \csc^{2} \theta \, d \theta = \frac{-1}{2-1}\cot \theta \cdot \csc^{2-2} \theta + \frac{2-2}{2-1} \int \csc^{2-2} \theta \, d \theta \\ \\ \\ \int \csc^{2} \theta \, d \theta = - \cot \theta \displaystyle \int \csc^{2} \theta \, d \theta = \frac{-1}{2-1}\cot \theta \cdot \csc^{2-2} \theta + \frac{2-2}{2-1} \int \csc^{2-2} \theta \, d \theta \\ \\ \\ \int \csc^{2} \theta \, d \theta = - \cot \theta](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Ccsc%5E%7B2%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%3D+%5Cfrac%7B-1%7D%7B2-1%7D%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B2-2%7D+%5Ctheta+%2B+%5Cfrac%7B2-2%7D%7B2-1%7D+%5Cint+%5Ccsc%5E%7B2-2%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Ccsc%5E%7B2%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%3D+-+%5Ccot+%5Ctheta)
Continuando com a integral principal:
![\displaystyle \int \csc^{4} \theta \, d \theta = \frac{-1}{3}\cot \theta \cdot \csc^{2} \theta + \frac{2}{3} \cdot (-\cot \theta) \\ \\ \\ \int \csc^{4} \theta \, d \theta = \boxed{\boxed{ -\frac{1}{3} \cot \theta \cdot \csc^{2} \theta - \frac{2}{3} \cot \theta + c}} \displaystyle \int \csc^{4} \theta \, d \theta = \frac{-1}{3}\cot \theta \cdot \csc^{2} \theta + \frac{2}{3} \cdot (-\cot \theta) \\ \\ \\ \int \csc^{4} \theta \, d \theta = \boxed{\boxed{ -\frac{1}{3} \cot \theta \cdot \csc^{2} \theta - \frac{2}{3} \cot \theta + c}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Ccsc%5E%7B4%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%3D+%5Cfrac%7B-1%7D%7B3%7D%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B2%7D+%5Ctheta+%2B+%5Cfrac%7B2%7D%7B3%7D+%5Ccdot+%28-%5Ccot+%5Ctheta%29+%5C%5C+%5C%5C+%5C%5C++%5Cint+%5Ccsc%5E%7B4%7D+%5Ctheta+%5C%2C+d+%5Ctheta+%3D+%5Cboxed%7B%5Cboxed%7B+-%5Cfrac%7B1%7D%7B3%7D+%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B2%7D+%5Ctheta+-+%5Cfrac%7B2%7D%7B3%7D+%5Ccot+%5Ctheta+%2B+c%7D%7D)
Multiplicando por 1/4, temos por fim:
![\displaystyle \int \frac{1}{4}\csc^{4} \theta \, d \theta= \boxed{\boxed{-\frac{1}{12} \cot \theta \cdot \csc^{2} \theta - \frac{1}{6} \cot \theta + c}} \displaystyle \int \frac{1}{4}\csc^{4} \theta \, d \theta= \boxed{\boxed{-\frac{1}{12} \cot \theta \cdot \csc^{2} \theta - \frac{1}{6} \cot \theta + c}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Cfrac%7B1%7D%7B4%7D%5Ccsc%5E%7B4%7D+%5Ctheta+%5C%2C+d+%5Ctheta%3D+%5Cboxed%7B%5Cboxed%7B-%5Cfrac%7B1%7D%7B12%7D+%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B2%7D+%5Ctheta+-+%5Cfrac%7B1%7D%7B6%7D+%5Ccot+%5Ctheta+%2B+c%7D%7D)
Tendo como base:
![\displaystyle x=\sqrt{2} \sin \theta \\ \\ \sin \theta = \frac{x}{\sqrt{2}} \displaystyle x=\sqrt{2} \sin \theta \\ \\ \sin \theta = \frac{x}{\sqrt{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+x%3D%5Csqrt%7B2%7D+%5Csin+%5Ctheta+%5C%5C+%5C%5C+%5Csin+%5Ctheta+%3D+%5Cfrac%7Bx%7D%7B%5Csqrt%7B2%7D%7D)
Agora imagine um triângulo, pela fórmula anterior, presumimos que o Cateto Oposto ao angulo é x e a hipotenusa é √2, e aplicando Pitágoras, o Cateto Adjacente y é:
![\displaystyle (\sqrt{2})^{2} = x^{2}+y^{2} \\ \\ y=\sqrt{2-x^{2}} \displaystyle (\sqrt{2})^{2} = x^{2}+y^{2} \\ \\ y=\sqrt{2-x^{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%28%5Csqrt%7B2%7D%29%5E%7B2%7D+%3D+x%5E%7B2%7D%2By%5E%7B2%7D+%5C%5C+%5C%5C+y%3D%5Csqrt%7B2-x%5E%7B2%7D%7D)
Pelas fórmulas:
![\displaystyle \cot \theta = \frac{CATETO \, \, ADJACENTE}{CATETO \, \, OPOSTO} \\ \\ \\ \cot \theta = \frac{\sqrt{2-x^{2}}}{x} \\ \\ \\ \csc \theta = \frac{HIPOTENUSA}{CATETO \, \, OPOSTO} \\ \\ \\ \csc \theta = \frac{\sqrt{2}}{x} \displaystyle \cot \theta = \frac{CATETO \, \, ADJACENTE}{CATETO \, \, OPOSTO} \\ \\ \\ \cot \theta = \frac{\sqrt{2-x^{2}}}{x} \\ \\ \\ \csc \theta = \frac{HIPOTENUSA}{CATETO \, \, OPOSTO} \\ \\ \\ \csc \theta = \frac{\sqrt{2}}{x}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Ccot+%5Ctheta+%3D+%5Cfrac%7BCATETO+%5C%2C+%5C%2C+ADJACENTE%7D%7BCATETO+%5C%2C+%5C%2C+OPOSTO%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccot+%5Ctheta+%3D+%5Cfrac%7B%5Csqrt%7B2-x%5E%7B2%7D%7D%7D%7Bx%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccsc+%5Ctheta+%3D+%5Cfrac%7BHIPOTENUSA%7D%7BCATETO+%5C%2C+%5C%2C+OPOSTO%7D+%5C%5C+%5C%5C+%5C%5C+%5Ccsc+%5Ctheta+%3D+%5Cfrac%7B%5Csqrt%7B2%7D%7D%7Bx%7D)
Concluindo:
![\displaystyle \int \frac{1}{x^{4} \sqrt{2-x^{2}}} \, dx = -\frac{1}{12} \cot \theta \cdot \csc^{2} \theta - \frac{1}{6} \cot \theta + c \\ \\ \\ \int \frac{1}{x^{4} \sqrt{2-x^{2}}} \, dx = \boxed{\boxed{\displaystyle -\frac{\sqrt{2-x^{2}}}{6x^{3}}-\frac{\sqrt{2-x^{2}}}{6x}+c}} \displaystyle \int \frac{1}{x^{4} \sqrt{2-x^{2}}} \, dx = -\frac{1}{12} \cot \theta \cdot \csc^{2} \theta - \frac{1}{6} \cot \theta + c \\ \\ \\ \int \frac{1}{x^{4} \sqrt{2-x^{2}}} \, dx = \boxed{\boxed{\displaystyle -\frac{\sqrt{2-x^{2}}}{6x^{3}}-\frac{\sqrt{2-x^{2}}}{6x}+c}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+%5Cfrac%7B1%7D%7Bx%5E%7B4%7D+%5Csqrt%7B2-x%5E%7B2%7D%7D%7D+%5C%2C+dx+%3D+-%5Cfrac%7B1%7D%7B12%7D+%5Ccot+%5Ctheta+%5Ccdot+%5Ccsc%5E%7B2%7D+%5Ctheta+-+%5Cfrac%7B1%7D%7B6%7D+%5Ccot+%5Ctheta+%2B+c+%5C%5C+%5C%5C+%5C%5C+%5Cint+%5Cfrac%7B1%7D%7Bx%5E%7B4%7D+%5Csqrt%7B2-x%5E%7B2%7D%7D%7D+%5C%2C+dx+%3D+%5Cboxed%7B%5Cboxed%7B%5Cdisplaystyle+-%5Cfrac%7B%5Csqrt%7B2-x%5E%7B2%7D%7D%7D%7B6x%5E%7B3%7D%7D-%5Cfrac%7B%5Csqrt%7B2-x%5E%7B2%7D%7D%7D%7B6x%7D%2Bc%7D%7D)
Então temos:
Considerando a identidade trigonométrica sin²θ + cos²θ = 1, então:
Daí temos:
Considere a fórmula para a integral por parte da função cossecante elevada à enésima potência:
Aplicando-a:
A integral de csc² θ:
Continuando com a integral principal:
Multiplicando por 1/4, temos por fim:
Tendo como base:
Agora imagine um triângulo, pela fórmula anterior, presumimos que o Cateto Oposto ao angulo é x e a hipotenusa é √2, e aplicando Pitágoras, o Cateto Adjacente y é:
Pelas fórmulas:
Concluindo:
Perguntas interessantes
Pedagogia,
11 meses atrás
Matemática,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás