Matemática, perguntado por oliveiraengelet, 1 ano atrás

Calcule a integral dupla:

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa noite Oliveira!

Solução!

\displaystyle\int _{0}^{1}\int_{ x^{2} }^{x}xy^{2}dydx\\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[\int_{ x^{2} }^{x} y^{2} }\bigg]dx\\\\\\\\ 
\displaystyle\int _{0}^{1}x \bigg[ y^{2} }\bigg]_{ x^{2}}^{x}   dx\\\\\\\\     
 \displaystyle\int _{0}^{1}x \bigg[  \frac{ y^{3} }{3} }\bigg]_{ x^{2}}^{x}   dx\\\\\\\\     
   \dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[y^{3}}\bigg]_{ x^{2}}^{x}   dx


 \dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[(x)^{3}-( x^{2})^{3}  }\bigg]dx\\\\\\\\\\\\\
 \dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[(x^{3}-x^{6})}\bigg]dx\\\\\\\\\\\     
  \dfrac{1}{3}. \displaystyle\int _{0}^{1} \bigg[(x^{4}-x^{7})}\bigg]dx\\\\\\\\\\\ 
 \dfrac{1}{3}.  \bigg[(x^{4}-x^{7})}\bigg]_{0}^{1} \\\\\\\\\\\ 
\dfrac{1}{3}.  \bigg[\dfrac{ x^{5} }{5} - \dfrac{x^{8} }{8} }\bigg]_{0}^{1} \\\\\\\\\\\ 
\dfrac{1}{3}.  \bigg[\dfrac{ 1^{5} }{5} - \dfrac{1^{8} }{8} }\bigg]


\dfrac{1}{3}.  \bigg[\dfrac{ 1 }{5} - \dfrac{1}{8} }\bigg] \\\\\\\\\
\dfrac{1}{3}.  \bigg[\dfrac{ 8-5 }{40} }\bigg] \\\\\\\\\
\dfrac{1}{3}.  \bigg[\dfrac{ 3 }{40} }\bigg] \\\\\\\\\
  \bigg[\dfrac{ 3 }{120} }\bigg] \\\\\\\\\
 \bigg[\dfrac{ 1 }{40} }\bigg]=0,025


\boxed{Resposta:~~\displaystyle\int _{0}^{1}\int_{ x^{2} }^{x}xy^{2}dydx= \frac{1}{40}=0,025}

Boa noite!
Bons estudos!
Perguntas interessantes