Calcule a integral dupla:
Anexos:
![](https://pt-static.z-dn.net/files/d6e/9f9626e5d2ad7ea5b15601fa3ac82349.jpeg)
Soluções para a tarefa
Respondido por
2
Boa noite Oliveira!
Solução!
![\displaystyle\int _{0}^{1}\int_{ x^{2} }^{x}xy^{2}dydx\\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[\int_{ x^{2} }^{x} y^{2} }\bigg]dx\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[ y^{2} }\bigg]_{ x^{2}}^{x} dx\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[ \frac{ y^{3} }{3} }\bigg]_{ x^{2}}^{x} dx\\\\\\\\
\dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[y^{3}}\bigg]_{ x^{2}}^{x} dx
\displaystyle\int _{0}^{1}\int_{ x^{2} }^{x}xy^{2}dydx\\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[\int_{ x^{2} }^{x} y^{2} }\bigg]dx\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[ y^{2} }\bigg]_{ x^{2}}^{x} dx\\\\\\\\
\displaystyle\int _{0}^{1}x \bigg[ \frac{ y^{3} }{3} }\bigg]_{ x^{2}}^{x} dx\\\\\\\\
\dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[y^{3}}\bigg]_{ x^{2}}^{x} dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7D%5Cint_%7B+x%5E%7B2%7D+%7D%5E%7Bx%7Dxy%5E%7B2%7Ddydx%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7Dx+%5Cbigg%5B%5Cint_%7B+x%5E%7B2%7D+%7D%5E%7Bx%7D+y%5E%7B2%7D+%7D%5Cbigg%5Ddx%5C%5C%5C%5C%5C%5C%5C%5C+%0A%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7Dx+%5Cbigg%5B+y%5E%7B2%7D+%7D%5Cbigg%5D_%7B+x%5E%7B2%7D%7D%5E%7Bx%7D+++dx%5C%5C%5C%5C%5C%5C%5C%5C+++++%0A+%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7Dx+%5Cbigg%5B++%5Cfrac%7B+y%5E%7B3%7D+%7D%7B3%7D+%7D%5Cbigg%5D_%7B+x%5E%7B2%7D%7D%5E%7Bx%7D+++dx%5C%5C%5C%5C%5C%5C%5C%5C+++++%0A+++%5Cdfrac%7B1%7D%7B3%7D.+%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7Dx+%5Cbigg%5By%5E%7B3%7D%7D%5Cbigg%5D_%7B+x%5E%7B2%7D%7D%5E%7Bx%7D+++dx%0A++++++++++)
![\dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[(x)^{3}-( x^{2})^{3} }\bigg]dx\\\\\\\\\\\\\
\dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[(x^{3}-x^{6})}\bigg]dx\\\\\\\\\\\
\dfrac{1}{3}. \displaystyle\int _{0}^{1} \bigg[(x^{4}-x^{7})}\bigg]dx\\\\\\\\\\\
\dfrac{1}{3}. \bigg[(x^{4}-x^{7})}\bigg]_{0}^{1} \\\\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ x^{5} }{5} - \dfrac{x^{8} }{8} }\bigg]_{0}^{1} \\\\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ 1^{5} }{5} - \dfrac{1^{8} }{8} }\bigg] \dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[(x)^{3}-( x^{2})^{3} }\bigg]dx\\\\\\\\\\\\\
\dfrac{1}{3}. \displaystyle\int _{0}^{1}x \bigg[(x^{3}-x^{6})}\bigg]dx\\\\\\\\\\\
\dfrac{1}{3}. \displaystyle\int _{0}^{1} \bigg[(x^{4}-x^{7})}\bigg]dx\\\\\\\\\\\
\dfrac{1}{3}. \bigg[(x^{4}-x^{7})}\bigg]_{0}^{1} \\\\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ x^{5} }{5} - \dfrac{x^{8} }{8} }\bigg]_{0}^{1} \\\\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ 1^{5} }{5} - \dfrac{1^{8} }{8} }\bigg]](https://tex.z-dn.net/?f=+%5Cdfrac%7B1%7D%7B3%7D.+%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7Dx+%5Cbigg%5B%28x%29%5E%7B3%7D-%28+x%5E%7B2%7D%29%5E%7B3%7D++%7D%5Cbigg%5Ddx%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A+%5Cdfrac%7B1%7D%7B3%7D.+%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7Dx+%5Cbigg%5B%28x%5E%7B3%7D-x%5E%7B6%7D%29%7D%5Cbigg%5Ddx%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+++++%0A++%5Cdfrac%7B1%7D%7B3%7D.+%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7D+%5Cbigg%5B%28x%5E%7B4%7D-x%5E%7B7%7D%29%7D%5Cbigg%5Ddx%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0A+%5Cdfrac%7B1%7D%7B3%7D.++%5Cbigg%5B%28x%5E%7B4%7D-x%5E%7B7%7D%29%7D%5Cbigg%5D_%7B0%7D%5E%7B1%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0A%5Cdfrac%7B1%7D%7B3%7D.++%5Cbigg%5B%5Cdfrac%7B+x%5E%7B5%7D+%7D%7B5%7D+-+%5Cdfrac%7Bx%5E%7B8%7D+%7D%7B8%7D+%7D%5Cbigg%5D_%7B0%7D%5E%7B1%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0A%5Cdfrac%7B1%7D%7B3%7D.++%5Cbigg%5B%5Cdfrac%7B+1%5E%7B5%7D+%7D%7B5%7D+-+%5Cdfrac%7B1%5E%7B8%7D+%7D%7B8%7D+%7D%5Cbigg%5D)
![\dfrac{1}{3}. \bigg[\dfrac{ 1 }{5} - \dfrac{1}{8} }\bigg] \\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ 8-5 }{40} }\bigg] \\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ 3 }{40} }\bigg] \\\\\\\\\
\bigg[\dfrac{ 3 }{120} }\bigg] \\\\\\\\\
\bigg[\dfrac{ 1 }{40} }\bigg]=0,025 \dfrac{1}{3}. \bigg[\dfrac{ 1 }{5} - \dfrac{1}{8} }\bigg] \\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ 8-5 }{40} }\bigg] \\\\\\\\\
\dfrac{1}{3}. \bigg[\dfrac{ 3 }{40} }\bigg] \\\\\\\\\
\bigg[\dfrac{ 3 }{120} }\bigg] \\\\\\\\\
\bigg[\dfrac{ 1 }{40} }\bigg]=0,025](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B3%7D.++%5Cbigg%5B%5Cdfrac%7B+1+%7D%7B5%7D+-+%5Cdfrac%7B1%7D%7B8%7D+%7D%5Cbigg%5D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cdfrac%7B1%7D%7B3%7D.++%5Cbigg%5B%5Cdfrac%7B+8-5+%7D%7B40%7D+%7D%5Cbigg%5D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cdfrac%7B1%7D%7B3%7D.++%5Cbigg%5B%5Cdfrac%7B+3+%7D%7B40%7D+%7D%5Cbigg%5D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A++%5Cbigg%5B%5Cdfrac%7B+3+%7D%7B120%7D+%7D%5Cbigg%5D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A+%5Cbigg%5B%5Cdfrac%7B+1+%7D%7B40%7D+%7D%5Cbigg%5D%3D0%2C025+)
![\boxed{Resposta:~~\displaystyle\int _{0}^{1}\int_{ x^{2} }^{x}xy^{2}dydx= \frac{1}{40}=0,025} \boxed{Resposta:~~\displaystyle\int _{0}^{1}\int_{ x^{2} }^{x}xy^{2}dydx= \frac{1}{40}=0,025}](https://tex.z-dn.net/?f=%5Cboxed%7BResposta%3A%7E%7E%5Cdisplaystyle%5Cint+_%7B0%7D%5E%7B1%7D%5Cint_%7B+x%5E%7B2%7D+%7D%5E%7Bx%7Dxy%5E%7B2%7Ddydx%3D+%5Cfrac%7B1%7D%7B40%7D%3D0%2C025%7D+)
Boa noite!
Bons estudos!
Solução!
Boa noite!
Bons estudos!
Perguntas interessantes
Inglês,
11 meses atrás
Geografia,
11 meses atrás
Saúde,
11 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás