Matemática, perguntado por EFSkinha, 1 ano atrás

calcule a integral a seguir:

Anexos:

Soluções para a tarefa

Respondido por ArthurPDC
1
Pelo Teorema de Fubini, podemos resolver integrais múltiplas "de dentro pra fora", isto é, resolvemos inicialmente a integral simples mais interna e vamos passando para as mais externas. Veja, considerando I como a integral tripla dada:

\displaystyle
I=\int_0^1\int_0^x\int_0^{xy} x\,dz\,dy\,dx\\\\
I=\int_0^1\int_0^x\left[\int_0^{xy} x\,dz\right]\,dy\,dx\\\\
I=\int_0^1\int_0^x\left[x\int_0^{xy} dz\right]\,dy\,dx\\\\
I=\int_0^1\int_0^xx\left[z\right]_0^{xy}\,dy\,dx\\\\
I=\int_0^1\int_0^xx\left[xy-0\right]\,dy\,dx\\\\
I=\int_0^1\int_0^xx^2y\,dy\,dx\\\\
I=\int_0^1\left[\int_0^xx^2y\,dy\right]\,dx\\\\
I=\int_0^1\left[x^2\int_0^xy\,dy\right]\,dx\\\\
I=\int_0^1x^2\left[\dfrac{y^2}{2}\right]_0^x\,dx

\displaystyle
I=\int_0^1x^2\left[\dfrac{x^2}{2}-\dfrac{0^2}{2}\right]\,dx\\\\
I=\int_0^1\dfrac{x^4}{2}\,dx=\dfrac{1}{2}\int_0^1 x^4\,dx\\\\
I=\dfrac{1}{2}\left[\dfrac{x^5}{5}\right]_0^1\\\\
I=\dfrac{1}{2}\left[\dfrac{1^5}{5}-\dfrac{0^5}{5}\right]\\\\
I=\dfrac{1}{2}\cdot\dfrac{1}{5}\\\\
\boxed{I=\dfrac{1}{10}}

EFSkinha: muito obrigado... me ajudou muito
ArthurPDC: De nada!
Perguntas interessantes