Calcule a integral
9)
Soluções para a tarefa
Respondido por
1
Vamos utilizar a seguinte substituição trigonométrica:
x² + a² ⇔ x = atg(u)
x² + 2² ⇔ x = 2tg(u)
Ou seja,
x = 2tg(u)
Vamos derivar ambos os lados...
dx = 2Sec²udu
-------------------
Logo,
![\\ = \int\limits { \frac{dx}{x \sqrt{x^2+4} } } \, = \int\limits { \frac{2Sec^2udu}{2tgu\sqrt{(2tgu)^2+4} } } \,
\\
\\ = \int\limits { \frac{2Sec^2udu}{2tgu\sqrt{4tg^2u+4} } } \,
\\
\\ = \int\limits { \frac{2Sec^2udu}{2tgu\sqrt{4(tg^2u+1)} } } \, \\ = \int\limits { \frac{dx}{x \sqrt{x^2+4} } } \, = \int\limits { \frac{2Sec^2udu}{2tgu\sqrt{(2tgu)^2+4} } } \,
\\
\\ = \int\limits { \frac{2Sec^2udu}{2tgu\sqrt{4tg^2u+4} } } \,
\\
\\ = \int\limits { \frac{2Sec^2udu}{2tgu\sqrt{4(tg^2u+1)} } } \,](https://tex.z-dn.net/?f=+%5C%5C+%3D+%5Cint%5Climits++%7B+%5Cfrac%7Bdx%7D%7Bx+%5Csqrt%7Bx%5E2%2B4%7D+%7D+%7D+%5C%2C+%3D++++%5Cint%5Climits++%7B+%5Cfrac%7B2Sec%5E2udu%7D%7B2tgu%5Csqrt%7B%282tgu%29%5E2%2B4%7D+%7D+%7D+%5C%2C+%0A+%5C%5C+%0A+%5C%5C+%3D++%5Cint%5Climits++%7B+%5Cfrac%7B2Sec%5E2udu%7D%7B2tgu%5Csqrt%7B4tg%5E2u%2B4%7D+%7D+%7D+%5C%2C%0A+%5C%5C+%0A+%5C%5C+%3D++%5Cint%5Climits++%7B+%5Cfrac%7B2Sec%5E2udu%7D%7B2tgu%5Csqrt%7B4%28tg%5E2u%2B1%29%7D+%7D+%7D+%5C%2C)
Substituindo tg²u+1 = Sec²u
-------------------
![\\ = \int\limits { \frac{2sec^2udu}{2tgu \sqrt{4Sec^2u} } } \,
\\
\\ = \int\limits { \frac{2sec^2udu}{2tgu*2Secu } } \,
\\
\\ = \frac{1}{2} \int\limits { \frac{secudu}{tgu } } \,
\\
\\ = \frac{1}{2} \int\limits { \frac{ \frac{1}{Cosu} du}{ \frac{Senu}{Cosu} } } \,
\\
\\ = \frac{1}{2} \int\limits { \frac{1}{Cosu} } * \frac{Cosu}{Senu} \, du
\\
\\ = \frac{1}{2} \int\limits { \frac{1}{Senu} } \, du \\ = \int\limits { \frac{2sec^2udu}{2tgu \sqrt{4Sec^2u} } } \,
\\
\\ = \int\limits { \frac{2sec^2udu}{2tgu*2Secu } } \,
\\
\\ = \frac{1}{2} \int\limits { \frac{secudu}{tgu } } \,
\\
\\ = \frac{1}{2} \int\limits { \frac{ \frac{1}{Cosu} du}{ \frac{Senu}{Cosu} } } \,
\\
\\ = \frac{1}{2} \int\limits { \frac{1}{Cosu} } * \frac{Cosu}{Senu} \, du
\\
\\ = \frac{1}{2} \int\limits { \frac{1}{Senu} } \, du](https://tex.z-dn.net/?f=+%5C%5C+%3D++%5Cint%5Climits+%7B+%5Cfrac%7B2sec%5E2udu%7D%7B2tgu+%5Csqrt%7B4Sec%5E2u%7D+%7D+%7D+%5C%2C++%0A+%5C%5C+%0A+%5C%5C+%3D+++%5Cint%5Climits+%7B+%5Cfrac%7B2sec%5E2udu%7D%7B2tgu%2A2Secu+%7D+%7D+%5C%2C++%0A+%5C%5C+%0A+%5C%5C+%3D++%5Cfrac%7B1%7D%7B2%7D++%5Cint%5Climits+%7B+%5Cfrac%7Bsecudu%7D%7Btgu+%7D+%7D+%5C%2C++%0A+%5C%5C+%0A+%5C%5C+%3D+%5Cfrac%7B1%7D%7B2%7D+%5Cint%5Climits+%7B+%5Cfrac%7B+%5Cfrac%7B1%7D%7BCosu%7D+du%7D%7B+%5Cfrac%7BSenu%7D%7BCosu%7D+%7D+%7D+%5C%2C++%0A+%5C%5C+%0A+%5C%5C+%3D+%5Cfrac%7B1%7D%7B2%7D+%5Cint%5Climits+%7B+%5Cfrac%7B1%7D%7BCosu%7D+%7D+%2A+%5Cfrac%7BCosu%7D%7BSenu%7D+%5C%2C+du%0A+%5C%5C+%0A+%5C%5C++%3D++%5Cfrac%7B1%7D%7B2%7D+%5Cint%5Climits+%7B+%5Cfrac%7B1%7D%7BSenu%7D+%7D++%5C%2C+du)
Sabemos que, 1/Senu = Cossecu
---------------------------
![= \frac{1}{2} \int\limits {Cossecu} \, du = \frac{1}{2} \int\limits {Cossecu} \, du](https://tex.z-dn.net/?f=%3D++%5Cfrac%7B1%7D%7B2%7D+%5Cint%5Climits+%7BCossecu%7D++%5C%2C+du)
Sabemos que essa integral é tabelada e vale : ln| Cossecu - Cotgu|
Então teremos:
![\\ = \frac{1}{2} ln| Cossecu- Cotgu| + C \\ = \frac{1}{2} ln| Cossecu- Cotgu| + C](https://tex.z-dn.net/?f=+%5C%5C+%3D++%5Cfrac%7B1%7D%7B2%7D+ln%7C+Cossecu-+Cotgu%7C+%2B+C)
--------------------------
Achando o valor de cotgu e cossecu
---------------
Temos que:
2tgu = x
![tgu = \frac{x}{2} tgu = \frac{x}{2}](https://tex.z-dn.net/?f=tgu+%3D++%5Cfrac%7Bx%7D%7B2%7D+)
Como tgu = Co/ ca
logo,
Co = x
Ca = 2
--------------------
Achando hip:
hip² = co²+ca²
hip² = x² + 2²
hip = √(x²+4)
----------------
Como Cotgu = 1/tgu
Então,
Cotgu = 1/(x/2)
Cotgu = 2/x
----------------------
Cossecu = 1/Senu
Cossecu = 1/(Co/hip)
Cossecu = Hip/Co
Cossecu = √(x²+4)/x
-------------------------
Agora só substituir:
![\\ = \frac{1}{2}ln| \frac{ \sqrt{x^2+4} }{x} - \frac{2}{x} |+C
\\
\\ = \frac{1}{2}ln| \frac{ \sqrt{x^2+4}-2 }{x} |+C
\\ = \frac{1}{2}ln| \frac{ \sqrt{x^2+4} }{x} - \frac{2}{x} |+C
\\
\\ = \frac{1}{2}ln| \frac{ \sqrt{x^2+4}-2 }{x} |+C](https://tex.z-dn.net/?f=+%5C%5C+%3D++%5Cfrac%7B1%7D%7B2%7Dln%7C++%5Cfrac%7B+%5Csqrt%7Bx%5E2%2B4%7D+%7D%7Bx%7D+-+%5Cfrac%7B2%7D%7Bx%7D+%7C%2BC%0A+%5C%5C+%0A+%5C%5C+%3D+%5Cfrac%7B1%7D%7B2%7Dln%7C++%5Cfrac%7B+%5Csqrt%7Bx%5E2%2B4%7D-2+%7D%7Bx%7D+%7C%2BC%0A+)
x² + a² ⇔ x = atg(u)
x² + 2² ⇔ x = 2tg(u)
Ou seja,
x = 2tg(u)
Vamos derivar ambos os lados...
dx = 2Sec²udu
-------------------
Logo,
Substituindo tg²u+1 = Sec²u
-------------------
Sabemos que, 1/Senu = Cossecu
---------------------------
Sabemos que essa integral é tabelada e vale : ln| Cossecu - Cotgu|
Então teremos:
--------------------------
Achando o valor de cotgu e cossecu
---------------
Temos que:
2tgu = x
Como tgu = Co/ ca
logo,
Co = x
Ca = 2
--------------------
Achando hip:
hip² = co²+ca²
hip² = x² + 2²
hip = √(x²+4)
----------------
Como Cotgu = 1/tgu
Então,
Cotgu = 1/(x/2)
Cotgu = 2/x
----------------------
Cossecu = 1/Senu
Cossecu = 1/(Co/hip)
Cossecu = Hip/Co
Cossecu = √(x²+4)/x
-------------------------
Agora só substituir:
Respondido por
0
Perguntas interessantes