Matemática, perguntado por st0dy, 4 meses atrás

Calcule a expressão

Anexos:

Soluções para a tarefa

Respondido por chuvanocampo
0

Olá.

$\displaystyle\frac{(4^{-2}+\frac{7^0}{\sqrt16})*(1,25)^{-1}+125^{\frac{1}{3}}}{(-2)^3+15}=

=$\displaystyle\frac{(\frac{1}{4^2}+\frac{1}{4})*(\frac{125}{100})^{-1}+ \sqrt[3]{125^1}} {(-2)(-2)(-2)+15}

=$\displaystyle\frac{(\frac{1}{16}+\frac{1}{4})*(\frac{100}{125})+ \sqrt[3]{5^3}} {(-8)+15}

=$\displaystyle\frac{(\frac{1+4}{16})*(\frac{2^2*5^2}{5^3})+5} {-8+15}

=$\displaystyle\frac{(\frac{5}{16})*(\frac{2^2}{5})+5} {7}

=$\displaystyle\frac{\frac{5}{16}*\frac{4}{5}+5} {7}

=$\displaystyle\frac{\frac{5}{4^2}*\frac{4}{5}+5} {7}

=$\displaystyle\frac{\frac{1}{4}*\frac{1}{1}+5} {7}

=$\displaystyle\frac{\frac{1}{4}+5} {7}

=$\displaystyle\frac{\frac{1+20}{4}} {7}

=$\displaystyle\frac{\frac{21}{4}} {7}

=$\displaystyle\frac{21}{4}}*\frac{1} {7}

=$\displaystyle\frac{3*7}{4}}*\frac{1} {7}

=$\displaystyle\frac{3}{4}}*\frac{1} {1}

=$\displaystyle\frac{3}{4}}

Perguntas interessantes