Calcule a derivada:
y=
Soluções para a tarefa
Respondido por
0
Caso esteja pelo app, experimente abrir esta resposta pelo navegador: https://brainly.com.br/tarefa/8290537
—————

![\large\begin{array}{l} \texttt{Aqui, usamos a Regra do Produto:}\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{d}{dx}\big[x\cdot (a+bx)^{1/2}\big]}\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{d}{dx}(x)\cdot (a+bx)^{1/2}+x\cdot \dfrac{d}{dx}\big[(a+bx)^{1/2}\big]}\\\\ \mathtt{\dfrac{dy}{dx}=1\cdot (a+bx)^{1/2}+x\cdot \dfrac{d}{dx}\big[(a+bx)^{1/2}\big]} \end{array} \large\begin{array}{l} \texttt{Aqui, usamos a Regra do Produto:}\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{d}{dx}\big[x\cdot (a+bx)^{1/2}\big]}\\\\ \mathtt{\dfrac{dy}{dx}=\dfrac{d}{dx}(x)\cdot (a+bx)^{1/2}+x\cdot \dfrac{d}{dx}\big[(a+bx)^{1/2}\big]}\\\\ \mathtt{\dfrac{dy}{dx}=1\cdot (a+bx)^{1/2}+x\cdot \dfrac{d}{dx}\big[(a+bx)^{1/2}\big]} \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D+%5Ctexttt%7BAqui%2C+usamos+a+Regra+do+Produto%3A%7D%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbig%5Bx%5Ccdot+%28a%2Bbx%29%5E%7B1%2F2%7D%5Cbig%5D%7D%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7Bd%7D%7Bdx%7D%28x%29%5Ccdot+%28a%2Bbx%29%5E%7B1%2F2%7D%2Bx%5Ccdot+%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbig%5B%28a%2Bbx%29%5E%7B1%2F2%7D%5Cbig%5D%7D%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot+%28a%2Bbx%29%5E%7B1%2F2%7D%2Bx%5Ccdot+%5Cdfrac%7Bd%7D%7Bdx%7D%5Cbig%5B%28a%2Bbx%29%5E%7B1%2F2%7D%5Cbig%5D%7D+%5Cend%7Barray%7D)
![\large\begin{array}{l} \texttt{Agora, para a \'ultima derivada no lado direito, usamos}\\\texttt{a Regra da Cadeia, pois temos uma fun\c{c}\~ao composta:}\\\\ \mathtt{\dfrac{dy}{dx}=1\cdot (a+bx)^{1/2}+x\cdot \left[\dfrac{1}{2}\cdot (a+bx)^{(1/2)-1}\cdot \dfrac{d}{dx}\,(a+bx)\right]}\\\\ \mathtt{\dfrac{dy}{dx}=1\cdot (a+bx)^{1/2}+x\cdot \left[\dfrac{1}{2}\cdot (a+bx)^{-1/2}\cdot (0+b)\right]}\\\\ \mathtt{\dfrac{dy}{dx}=(a+bx)^{1/2}+\dfrac{b}{2}\,x\cdot (a+bx)^{-1/2}} \end{array} \large\begin{array}{l} \texttt{Agora, para a \'ultima derivada no lado direito, usamos}\\\texttt{a Regra da Cadeia, pois temos uma fun\c{c}\~ao composta:}\\\\ \mathtt{\dfrac{dy}{dx}=1\cdot (a+bx)^{1/2}+x\cdot \left[\dfrac{1}{2}\cdot (a+bx)^{(1/2)-1}\cdot \dfrac{d}{dx}\,(a+bx)\right]}\\\\ \mathtt{\dfrac{dy}{dx}=1\cdot (a+bx)^{1/2}+x\cdot \left[\dfrac{1}{2}\cdot (a+bx)^{-1/2}\cdot (0+b)\right]}\\\\ \mathtt{\dfrac{dy}{dx}=(a+bx)^{1/2}+\dfrac{b}{2}\,x\cdot (a+bx)^{-1/2}} \end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D+%5Ctexttt%7BAgora%2C+para+a+%5C%27ultima+derivada+no+lado+direito%2C+usamos%7D%5C%5C%5Ctexttt%7Ba+Regra+da+Cadeia%2C+pois+temos+uma+fun%5Cc%7Bc%7D%5C%7Eao+composta%3A%7D%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot+%28a%2Bbx%29%5E%7B1%2F2%7D%2Bx%5Ccdot+%5Cleft%5B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot+%28a%2Bbx%29%5E%7B%281%2F2%29-1%7D%5Ccdot+%5Cdfrac%7Bd%7D%7Bdx%7D%5C%2C%28a%2Bbx%29%5Cright%5D%7D%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot+%28a%2Bbx%29%5E%7B1%2F2%7D%2Bx%5Ccdot+%5Cleft%5B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot+%28a%2Bbx%29%5E%7B-1%2F2%7D%5Ccdot+%280%2Bb%29%5Cright%5D%7D%5C%5C%5C%5C+%5Cmathtt%7B%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%28a%2Bbx%29%5E%7B1%2F2%7D%2B%5Cdfrac%7Bb%7D%7B2%7D%5C%2Cx%5Ccdot+%28a%2Bbx%29%5E%7B-1%2F2%7D%7D+%5Cend%7Barray%7D)



Tags: derivada função produto polinômio raiz quadrada sqrt irracional função composta regra do produto regra da cadeia cálculo diferencial integral
—————
Tags: derivada função produto polinômio raiz quadrada sqrt irracional função composta regra do produto regra da cadeia cálculo diferencial integral
Perguntas interessantes
Biologia,
1 ano atrás
História,
1 ano atrás
Português,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás