Matemática, perguntado por lug3gamepllaaa, 11 meses atrás

calcule a área de um triangulo equilatero de lado 6√2cm

Soluções para a tarefa

Respondido por lucasr458
1

a área de um triângulo equilátero se dá por:

 \frac{ {l}^{2}  \sqrt{3} }{4}

substituindo o l por 6√2:

 \frac{( {6 \sqrt{2})}^{2}  \sqrt{3} }{4} = \\ \frac{ (36 \times 2 ) \sqrt{3} }{4} = \\ 18 \sqrt{3}

Respondido por profmbacelar
0

Resposta:

18√3

Explicação passo-a-passo:

A_{eq}=\frac{L^2*\sqrt{3}}{4}\\A_{eq}=\frac{(6\sqrt{2})^2*\sqrt{3}}{4}\\A_{eq}=\frac{(36*2*\sqrt{3}}{4}\\A_{eq}=\frac{(72*\sqrt{3}}{4}\\A_{eq}=\frac{72*\sqrt{3}}{4}=18\sqrt{3}

Perguntas interessantes