Matemática, perguntado por BrunaHatakeyama, 1 ano atrás

calcule:
a) √12x ( √14+ √15)


b) ( √6+ √32) x ( √2- √24 )

Soluções para a tarefa

Respondido por Lukyo
1
Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador:  https://brainly.com.br/tarefa/7510919

——————————

a)  \mathsf{\sqrt{12}\cdot \big(\sqrt{14}+\sqrt{15}\big).}

Aplique a distributiva para eliminar os parênteses:

     \mathsf{\sqrt{12}\cdot \big(\sqrt{14}+\sqrt{15}\big)}\\\\ =\mathsf{\sqrt{12}\cdot \sqrt{14}+\sqrt{12}\cdot \sqrt{15}}\\\\ =\mathsf{\sqrt{12\cdot 14}+\sqrt{12\cdot 15}}\\\\ =\mathsf{\sqrt{168}+\sqrt{180}}


Agora, expresse os radicandos de forma decomposta em fatores primos, e simplifique as raízes:

     =\mathsf{\sqrt{2^3\cdot 3\cdot 7}+\sqrt{2^2\cdot 3^2\cdot 5}}\\\\ =\mathsf{\sqrt{2^2\cdot 2\cdot 3\cdot 7}+\sqrt{(2\cdot 3)^2\cdot 5}}\\\\ =\mathsf{\sqrt{2^2}\cdot \sqrt{2\cdot 3\cdot 7}+\sqrt{(2\cdot 3)^2}\cdot \sqrt{5}}\\\\ =\mathsf{2\cdot \sqrt{42}+(2\cdot 3)\cdot \sqrt{5}}

     =\mathsf{2\sqrt{42}+6\sqrt{5}}    <———    esta é a resposta.

—————

b)  \mathsf{\big(\sqrt{6}+\sqrt{32}\big)\cdot \big(\sqrt{2}-\sqrt{24}\big).}

Primeiro, simplifique as raízes ao máximo:

     \mathsf{\big(\sqrt{6}+\sqrt{32}\big)\cdot \big(\sqrt{2}-\sqrt{24}\big)}\\\\ =\mathsf{\big(\sqrt{6}+\sqrt{2^5}\big)\cdot \big(\sqrt{2}-\sqrt{2^3\cdot 3}\big)}\\\\ =\mathsf{\big(\sqrt{6}+\sqrt{2^4\cdot 2}\big)\cdot \big(\sqrt{2}-\sqrt{2^2\cdot 2\cdot 3}\big)}\\\\ =\mathsf{\big(\sqrt{6}+\sqrt{2^{2\,\cdot\,2}\cdot 2}\big)\cdot \big(\sqrt{2}-\sqrt{2^2\cdot 6}\big)}\\\\ =\mathsf{\big(\sqrt{6}+\sqrt{(2^2)^2\cdot 2}\big)\cdot \big(\sqrt{2}-\sqrt{2^2\cdot 6}\big)}\\\\ =\mathsf{\big(\sqrt{6}+\sqrt{(2^2)^2}\cdot \sqrt{2}\big)\cdot \big(\sqrt{2}-\sqrt{2^2}\cdot \sqrt{6}\big)}\\\\ =\mathsf{\big(\sqrt{6}+2^2\cdot \sqrt{2}\big)\cdot \big(\sqrt{2}-2\cdot \sqrt{6}\big)}\\\\ =\mathsf{\big(\sqrt{6}+4\sqrt{2}\big)\cdot \big(\sqrt{2}-2\sqrt{6}\big)}


Aplicando a distributiva para eliminar os parênteses,
 
     =\mathsf{\big(\sqrt{6}+4\sqrt{2}\big)\cdot \sqrt{2}-\big(\sqrt{6}+4\sqrt{2}\big)\cdot 2\sqrt{6}}\\\\ =\mathsf{\sqrt{6}\cdot \sqrt{2}+4\sqrt{2}\cdot \sqrt{2}-\sqrt{6}\cdot 2\sqrt{6}-4\sqrt{2}\cdot 2\sqrt{6}}\\\\ =\mathsf{\sqrt{6\cdot 2}+4\sqrt{2\cdot 2}-2\sqrt{6\cdot 6}-8\sqrt{2\cdot 6}}\\\\ =\mathsf{\sqrt{12}+4\sqrt{2^2}-2\sqrt{6^2}-8\sqrt{12}}\\\\ =\mathsf{\sqrt{12}+4\cdot 2-2\cdot 6-8\sqrt{12}}\\\\ =\mathsf{8-12+\sqrt{12}-8\sqrt{12}}\\\\ =\mathsf{-4-7\sqrt{12}}\\\\ =\mathsf{-4-7\sqrt{2^2\cdot 3}}\\\\ =\mathsf{-4-7\sqrt{2^2}\cdot \sqrt{3}}\\\\ =\mathsf{-4-7\cdot 2\cdot \sqrt{3}}

     =\mathsf{-4-14\sqrt{3}}    <———    esta é a resposta.


Bons estudos! :-)

Perguntas interessantes