Matemática, perguntado por GelsonSouza, 1 ano atrás


Calcule (1+i)^10 e (1-i)^11.(sugestão calcule (1+i)^2 e (1-i)^2).

Soluções para a tarefa

Respondido por Usuário anônimo
16
a)
(1+i)^{10}=\\\\\left[(1+i)^2\right]^5=\\\\\left[1+2i+i^2\right]^5=\\\\(\cancel{1}+2i-\cancel{1})^5=\\\\(2i)^5=\\\\32i^5=\\\\32\cdot i^1=\\\\\boxed{32i}

b)
(1-i)^{11}=\\(1-i)^{10}\cdot(1-i)=\\\left[(1-i)^2\right]^5\cdot(1-i)=\\\left[1+2i+i^2\right]^5\cdot(1-i)=\\(\cancel{1}+2i-\cancel{1})^5\cdot(1-i)=\\(2i)^5\cdot(1-i)=\\32i^5\cdot(1-i)=\\32\cdot i^1\cdot(1-i)=\\32i(1-i)=\\32i-32i^2=\\\boxed{32i+32}

Respondido por CyberKirito
1

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/132212

                                             

\sf (1+i)^{10}\\\sf \rho=\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt{2}\\\begin{cases}\sf cos(\theta)=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\\\sf sen(\theta)=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\end{cases}\implies\rm \theta=\dfrac{\pi}{4}\\\sf(1+i)^{10}=(\sqrt{2})^{10}\cdot\bigg[cos\bigg(10\cdot\dfrac{\pi}{4}\bigg)+i~sen\bigg(10\cdot\dfrac{\pi}{4}\bigg)\bigg]\\\sf (1+i)^{10}=32\cdot\bigg[cos\bigg(\dfrac{5\pi}{2}\bigg)+i~sen\bigg(\dfrac{5\pi}{2}\bigg)\bigg]\\\sf(1+i)^{10}=32\cdot(0+1)

\huge\boxed{\boxed{\boxed{\boxed{\sf(1+i)^{10}=32}}}}\blue{\checkmark}

Perguntas interessantes