Matemática, perguntado por italocantur, 1 ano atrás

Calcular sec (15°)

Me ajudem pfvr

Soluções para a tarefa

Respondido por DanJR
2

Resposta:

\boxed{\mathtt{\sqrt{6} - \sqrt{2}}}

Explicação passo-a-passo:

\\ \displaystyle \mathtt{\sec 15^o = \frac{1}{\cos 15^o}} \\\\\\ \mathtt{\sec 15^o = \frac{1}{\cos (45^o - 30^o)}} \\\\\\ \mathtt{\sec 15^o = \frac{1}{\cos 45^o \cdot \cos 30^o + \sin 45^o \cdot \sin 30^o}} \\\\\\ \mathtt{\sec 15^o = \frac{1}{\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}}}

\\ \displaystyle \mathtt{\sec 15^o = \frac{1}{\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}}} \\\\\\ \mathtt{\sec 15^o = \frac{1}{\frac{\left ( \sqrt{6} + \sqrt{2} \right )}{4}}} \\\\\\ \mathtt{\sec 15^o = 1 \div \frac{\left ( \sqrt{6} + \sqrt{2} \right )}{4}} \\\\\\ \mathtt{\sec 15^o = 1 \times \frac{4}{\left ( \sqrt{6} + \sqrt{2} \right )}}

\\ \displaystyle \mathtt{\sec 15^o = \frac{4}{\left ( \sqrt{6} + \sqrt{2} \right )} \times \frac{\left ( \sqrt{6} - \sqrt{2} \right )}{\left ( \sqrt{6} - \sqrt{2} \right )}} \\\\\\ \mathtt{\sec 15^o = \frac{4 \cdot \left ( \sqrt{6} - \sqrt{2} \right )}{\left (6 - 2 \right )}} \\\\\\ \mathtt{\sec 15^o = \frac{4 \cdot \left ( \sqrt{6} - \sqrt{2} \right )}{4}} \\\\\\ \boxed{\boxed{\mathsf{\sec 15^o = \sqrt{6} - \sqrt{2}}}}


A saber,

\\ \displaystyle \mathtt{\bullet \qquad \sec x = \frac{1}{\cos x}} \\\\\\ \mathtt{\bullet \qquad \cos(x - y) = \cos x \cdot \cos y - \sin x \cdot \sin y}

Perguntas interessantes