Matemática, perguntado por amiltonsilvacorrea, 5 meses atrás

calcular o divergente de x^2yz+xy^2z+xyz^2​

Soluções para a tarefa

Respondido por mlealrj
1

F (x, y, z) = x²yz + xy²z + xyz²​

div F = [d (x²yz) / dx] + [d (xy²z) / dy] + [d (xyz²​) / dy]

div F = 2xyz + 2xyz + 2xyz

div F = 6xyz


amiltonsilvacorrea: muito obrigado
Respondido por solkarped
2

✅ Após resolver os cálculos, concluímos que o divergente do referido campo vetorial é:

                 \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\ \textrm{div}\:\vec{V}= 6xyz\:\:\:}}\end{gathered}$}

Seja o dado:

                   \Large\displaystyle\text{$\begin{gathered} x^{2}yz + xy^{2}z + xyz^{2}\end{gathered}$}

Organizando o campo vetorial "V" temos:

     \Large\displaystyle\text{$\begin{gathered} \vec{V}(x, y, z) = (x^{2}yz)\,\vec{i} + (xy^{2}z)\,\vec{j} + (xyz^{2})\,\vec{k}\end{gathered}$}

O divergente de um campo "V" vetorial no V³ - definido por "div V" - é o campo escalar dado pelo produto escalar do operador diferencial com o campo  V.  Ou seja

      \Large\displaystyle\text{$\begin{gathered} \textrm{div}\:\vec{V} = \nabla\cdot \vec{V}\end{gathered}$}

                     \Large\displaystyle\text{$\begin{gathered} = \bigg(\frac{\partial}{\partial x},\,\frac{\partial}{\partial y},\,\frac{\partial}{\partial z}\bigg)\cdot(X_{V}\vec{i},\,Y_{V}\vec{j},\,Z_{V}\vec{k})\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = \frac{\partial}{\partial x}\cdot X_{V}\vec{i} + \frac{\partial}{\partial y}\cdot Y_{V}\vec{j} + \frac{\partial}{\partial z}\cdot Z_{V}\vec{k}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = \frac{\partial}{\partial x}(x^{2}yz)\,\vec{i} + \frac{\partial}{\partial y}(xy^{2}z)\,\vec{j} + \frac{\partial}{\partial z}(xyz^{2})\,\vec{k}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = 2xyz\,\vec{i} + x2yz\,\vec{j} + xy2z\,\vec{k}\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = 2xyz + 2xyz + 2xyz\end{gathered}$}

                      \Large\displaystyle\text{$\begin{gathered} = 6xyz\end{gathered}$}

✅ Portanto o divergente é:

        \Large\displaystyle\text{$\begin{gathered} \textrm{div}\:\vec{V}= 6xyz\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52220805
  2. https://brainly.com.br/tarefa/1295523
  3. https://brainly.com.br/tarefa/1297394
  4. https://brainly.com.br/tarefa/45059846
  5. https://brainly.com.br/tarefa/52549121
Anexos:
Perguntas interessantes