Matemática, perguntado por JoaninhaMalik, 1 ano atrás

Calcular o 20 termo da PÁ (4,9 14... ??

Soluções para a tarefa

Respondido por digosaldanhap4rqfy
2
A fórmula que te passei no último exercício, serve para resolver esse tbm.
Primeiro subtrai pelo número antecessor para achar a razão.
depois aplica an= a1+ (n-1).r 
onde n= ao termo que vc precisa achar
Respondido por viniciusszillo
0

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da sequência (4, 9, 14,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:4

c)vigésimo termo (a₂₀): ?

d)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)

e)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 9 - 4 ⇒

r = 5     (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

a₂₀ = 4 + (20 - 1) . (5) ⇒

a₂₀ = 4 + (19) . (5) ⇒         (Veja a Observação 2.)

a₂₀ = 4 + 95 ⇒

a₂₀ = 99

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O vigésimo termo da P.A.(4, 9, 14, ...) é 99.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₂₀ = 99 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

99 = a₁ + (20 - 1) . (5) ⇒

99 = a₁ + (19) . (5) ⇒

99 = a₁ + 95 ⇒    (Passa-se 95 ao 1º membro e altera-se o sinal.)

99 - 95 = a₁ ⇒  

4 = a₁ ⇔              (O símbolo ⇔ significa "equivale a".)

a₁ = 4                   (Provado que a₂₀ = 99.)

→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/26814955

https://brainly.com.br/tarefa/26800624

https://brainly.com.br/tarefa/13085661

brainly.com.br/tarefa/20732562

brainly.com.br/tarefa/12840165

brainly.com.br/tarefa/26696968

brainly.com.br/tarefa/7767867

brainly.com.br/tarefa/15356246

brainly.com.br/tarefa/4091651

brainly.com.br/tarefa/2381253

brainly.com.br/tarefa/11073378

Perguntas interessantes