Matemática, perguntado por nisaro, 1 ano atrás

Calcular determinante 4x4 -2 -3 - 1 -2 -1 0 1 -2 -3 -1 -4 1 -2 2 -3 -1

 

Como calcular essa determinante 4x4 usando laplace?

Soluções para a tarefa

Respondido por justinianolima
9

O teorema consiste em escolher uma fila (linha,i, ou coluna,j) e multiplicar cada um de seus elementos pelo respectivo cofator:

Vamos pergar a 1ª Coluna:

<var>M=\left[\begin{array}{cccc}2&amp; -3 &amp;- 1&amp; -2\\ -1&amp; 0&amp; 1&amp; -2 \\-3&amp; -1&amp; -4 &amp;1\\ -2 &amp;2&amp; -3&amp; -1\end{array}\right]</var>

 

Formula do cofator:

<var>A_{ij}=(-1)^{1+j}.D_{ij}\\onde;\\D_{ij}=M-Linha_i-Coluna_j</var>

 

<var>A_{11}=(-1)^{1+1}.D_{11}\\A_{11}=(-1)^2.\left[\begin{array}{ccc} 0&amp; 1&amp; -2 \\ -1&amp; -4 &amp;1\\ 2&amp; -3&amp; -1\end{array}\right]=1*(-21)=-21</var>

<var>A_{21}=(-1)^{2+1}.D_{21}=\\A_{21}=(-1)^3.=\left[\begin{array}{cccc} -3 &amp;- 1&amp; -2\\ -1&amp; -4 &amp;1\\ 2&amp; -3&amp; -1\end{array}\right]=-1.(-44)=44</var>

<var>A_{31}=(-1)^{3+1}.D_{31}\\A_{31}=(-1)^4.\left[\begin{array}{cccc} -3 &amp;- 1&amp; -2\\ 0&amp; 1&amp; -2 \\2&amp; -3&amp; -1\end{array}\right]=1.29=29</var>

<var>A_{41}=(-1)^[4+1}.D_{41}\\A_{41}=(-1)^5.\left[\begin{array}{cccc} -3 &amp;- 1&amp; -2\\ 0&amp; 1&amp; -2 \\-1&amp; -4 &amp;1\end{array}\right]=-1.17=-17</var>

 

Entao:

 

<var>detM=a_{11}.A_{11}+a_{21}.A_{21}+a_{31}.A_{31}+a_{41}.A_{41}=\\ detM=2*(-21)+(-1)*44+(-3)*29+(-2)*(-17)\\ detM=-42-44-87+34= \\detM=-139</var>

Anexos:
Perguntas interessantes