Matemática, perguntado por zcauaaaaaaaa, 4 meses atrás

Calcular a soma dos 40 primeiros termos da P.A. (-2;-4;-6;...).

Soluções para a tarefa

Respondido por ewerton197775p7gwlb
4

 >  \: resolucao \\  \\  \geqslant  \: progressao \:  \: aritmetica \\  \\ r = a2 - a1 \\ r =  - 4 - ( - 2) \\ r =  - 4 + 2 \\ r =  - 2 \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  >  \: o \: 40 \: termo \: da \: pa \\  \\ an = a1 + (n - 1)r \\ an =  - 2 + (40 - 1) - 2 \\ an =  - 2 + 39 \times ( - 2) \\ an =  - 2 + ( - 78) \\ an =  - 2 - 78 \\ an =  - 80 \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  >  \: a \: soma \: dos \: termos \: da \: pa \\  \\ sn =  \frac{(a1 + an)n}{2}  \\  \\ sn =  \frac{( - 2 + ( - 80) \: )40}{2}  \\  \\ sn =  \frac{( - 2 - 80)40}{2}  \\  \\ sn =  \frac{ - 82 \times 40}{2}  \\  \\ sn =  - 82 \times 20 \\  \\ sn =  - 1640 \\  \\  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \geqslant  \geqslant

Anexos:
Respondido por Math739
4

Resposta:

\textsf{Segue a resposta abaixo}

Explicação passo-a-passo:

 \mathsf{ a_n=a_1+(n-1)\cdot r }

 \mathsf{ a_{40}= -2+ (40-1)\cdot (-2) }

 \mathsf{ a_{40}=-2+39\cdot(-2) }

 \mathsf{ a_{40}=-2-78}

 \mathsf{a_{40}=-80 }

 \mathsf{ S_n=\dfrac{(a_1+a_n)\cdot n}{2}}

 \mathsf{  S_{40}=\dfrac{( -2-80)\cdot40}{2}}

 \mathsf{S_{40}=\dfrac{-82\cdot 40}{2} }

 \mathsf{S_{40}=-41\cdot40 }

 \boxed{\boxed{\mathsf{ S_{40}= - 1640}}}

Perguntas interessantes