Calcular a integral definida abaixo
Anexos:
Soluções para a tarefa
Respondido por
1
∫ 8t² + cos (t) dt
π/2
=8t³/3 + sen (t) ]
-π/2
= (8/3) * (π/2)³ + sen π/2 - (8/3) * (-π/2)³ - sen(-π/2)
***sen( -π/2) =-sen (π/2)
= (8/3) * (π/2)³ + sen π/2 - (8/3) * (-π/2)³ - (-sen (π/2))
= (8/3) * (π³/8) + sen π/2 - (8/3) * (-π³/8) + sen π/2
= (8/3) * (π³/8) + sen π/2 + (8/3) * (π³/8) + sen π/2
=(16/3) * (π³/8) +2 * sen π/2
=(2π³/3) + 2 é a resposta
π/2
=8t³/3 + sen (t) ]
-π/2
= (8/3) * (π/2)³ + sen π/2 - (8/3) * (-π/2)³ - sen(-π/2)
***sen( -π/2) =-sen (π/2)
= (8/3) * (π/2)³ + sen π/2 - (8/3) * (-π/2)³ - (-sen (π/2))
= (8/3) * (π³/8) + sen π/2 - (8/3) * (-π³/8) + sen π/2
= (8/3) * (π³/8) + sen π/2 + (8/3) * (π³/8) + sen π/2
=(16/3) * (π³/8) +2 * sen π/2
=(2π³/3) + 2 é a resposta
Perguntas interessantes
Química,
8 meses atrás
Geografia,
8 meses atrás
Matemática,
8 meses atrás
História,
1 ano atrás
Informática,
1 ano atrás
Matemática,
1 ano atrás