Calcular a derivada das funções.
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
O cálculo de derivadas pode ser feito de duas formas: utilizando a definição de derivada, que envolve um limite que tende a uma indefinição, ou utilizando regras de derivação, cujo funcionamento é garantido pela análise matemática.
Em primeiro lugar, as derivadas, quando existem, determinam a inclinação da reta tangente a uma função f (x). Essa inclinação também é conhecida como taxa de variação e é utilizada para resolver os mais variados tipos de problemas matemáticos. Para determinar essa inclinação, deve-se calcular o limite abaixo. Dessa maneira, f ' (x) é a derivada da função f (x) e diz-se que f (x) é derivável no ponto p.
f ' (x) = lim f (x) – f (p)
x→p x – p
As notações mais utilizadas para a derivada da função f (x) são: f ' (x) ou [f (x)]'. Se essas derivadas forem calculadas no ponto p, as notações passarão a ser: f '(p) ou [f (p)]'.
Calcular esse limite não é grande desafio para funções polinomiais com grau 2 ou 3, uma vez que as propriedades de limites garantem que o limite das somas é igual à soma dos limites e, dessa forma, diante do limite de um polinômio, basta calcular os limites de cada monômio que o formou. Contudo, funções polinomiais de grau muito alto ou outros tipos de funções imprimem um alto grau de dificuldade para o cálculo desse limite. Dessa forma, buscando maior agilidade e facilidade para os cálculos de derivadas, é possível provar os resultados subsequentes, usualmente conhecidos como propriedades das derivadas, ou regras de derivação.
Espero ter ajudado...