Matemática, perguntado por emylesthefany15, 1 ano atrás

Calcular a área do triângulo de vértices A(8,3), B(4,7) e C(2,1).

Soluções para a tarefa

Respondido por Usuário anônimo
2

d(AB)=\sqrt{(8-4)^2+(7-3)^2}

d(AB)=\sqrt{4^2+4^2}

d(AB)=\sqrt{16+16}

d(AB)=\sqrt{32}

d(AC)=\sqrt{(8-2)^2+(3-1)^2}

d(AC)=\sqrt{6^2+2^2}

d(AC)=\sqrt{36+4}

d(AC)=\sqrt{40}

d(BC)=\sqrt{(4-2)^2+(7-1)^2}

d(BC)=\sqrt{2^2+6^2}

d(BC)=\sqrt{4+36}

d(BC)=\sqrt{40}

p=\frac{\sqrt{32}+\sqrt{40}+\sqrt{40} }{2}

p=\frac{\sqrt{4.8}+2\sqrt{40} }{2}

p=\frac{2\sqrt{8}+2\sqrt{40} }{2}

p=\sqrt{8}+\sqrt{40}

area=\sqrt{(\sqrt{8}+\sqrt{40}).(\sqrt{8}+\sqrt{40}-\sqrt{32}).(\sqrt{8}+\sqrt{40}-\sqrt{40}).(\sqrt{8}+\sqrt{40}-\sqrt{40})}

area=\sqrt{(\sqrt{8}+\sqrt{40}).(\sqrt{8}+\sqrt{40}-\sqrt{4.8}).\sqrt{8}.\sqrt{8}}

area=\sqrt{(\sqrt{8}+\sqrt{40}).(\sqrt{8}+\sqrt{40}-2\sqrt{8}).8}

area=\sqrt{(\sqrt{8}+\sqrt{40}).(\sqrt{40}-\sqrt{8}).8}

area=\sqrt{(\sqrt{8}.\sqrt{40}-8+40-\sqrt{8}.\sqrt{40}).8}

area=\sqrt{32.8}

area=\sqrt{256}

area=16

Perguntas interessantes