Matemática, perguntado por aishasjhaj637, 5 meses atrás

c) 6x² = 24

d) 7x² - 14 = 0​

Soluções para a tarefa

Respondido por attard
1

C)

\Large\mathsf\displaystyle{} {6x}^{2}  = 24 \\\Large\mathsf\displaystyle{} {x}^{2}   = 4 \\\Large\mathsf\displaystyle{}x =  \pm \sqrt{4}   \\\Large\mathsf\displaystyle{}x =  \pm2 \\\\  \Large\mathsf\displaystyle{}x =  - 2 \\ \Large\mathsf\displaystyle{}x = 2

Solução:

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{ x_{1}  =  - 2  }}}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{   x_{2} = 2 }}}\end{gathered}$}

D)

\Large\mathsf\displaystyle{} {7x}^{2}  - 14 = 0 \\ \Large\mathsf\displaystyle{} {x}^{2}  - 2 = 0 \\\Large\mathsf\displaystyle{} {x}^{2}   = 2 \\ \Large\mathsf\displaystyle{}x =  \pm \sqrt{2}  \\ \Large\mathsf\displaystyle{}x =  -  \sqrt{2}  \\ \Large\mathsf\displaystyle{} x =  \sqrt{2}

Solução:

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{  x_{1} =  -  \sqrt{2}   }}}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{  x_{2}  =  \sqrt{2}  }}}\end{gathered}$}

\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{{ \red{Bons}}  \blue{\:Estudos}}}}\end{gathered}$}

Anexos:

aishasjhaj637: Obrigada
Perguntas interessantes