Matemática, perguntado por italo00755, 6 meses atrás

C) 4 + x (x - 4) = 3x​

Soluções para a tarefa

Respondido por SorraBoluaP
1

Resposta:

Explicação passo a passo:

C) 4 + x.(x - 4) = 3x​

4 + x^2 - 4x = 3x

x^2 - 4x - 3x + 4 = 0

x^2 - 7x + 4 = 0

a = 1; b = - 7; c = 4

/\= b^2 - 4ac

/\= (-7)^2 - 4.1.4

/\ = 49 - 16

/\= 33

X = [- b +/- \/ /\]/ 2a

X = [ -(-7) +/- \/33] / 2.1

X' = (7 + \/33)/2

X " = (7 - \/33)/2

Respondido por simonesantosaraujo91
0

Resposta:

x_{1} =  \frac{7 +  \sqrt{33} }{2} \:  \:  \:  \:  \:  \:  \: x_{2} =  \frac{7 -  \sqrt{ 33} }{2} \\

Explicação passo-a-passo:

 \blue{4 + x(x - 4) = 3x} \\4 + x(x - 4) = 3x  \\4 + x(x - 4)  \\4 + x {}^{2} - 4x   \\x {}^{2} - 4x + 4 \\4 + x(x - 4) = 3x \\x {}^{2} - 4x + 4 = 3x  \\x {}^{2} - 4x + 4 - 3x = 3x - 3x  \\x {}^{2} - 4x + 4 - 3x = 0 \\x {}^{2}  - 4x + 4 = 3x\\x {}^{2} - 4x + 4 - 3x = 0  \\ - 4x - 3x  \\( - 4 - 3)x  \\ - 7x \\x {}^{2} - 4x + 4 - 3x = 0\\x {}^{2} - 7x + 4 = 0  \\x {}^{2} - 2 \times  \frac{7}{2} \times  + 4x  \\  ( \frac{7}{2}) {}^{2} - ( \frac{7}{2}) {}^{2} = 0 \\(x -  \frac{7}{2}) {}^{2} + 4 - ( \frac{7}{2}) {}^{2} = 0 \\x {}^{2} - 7x + 4 = 0 \\ (x -  \frac{7}{2}) {}^{2} + 4 - ( \frac{7}{2}) {}^{2} = 0 \\ (x -  \frac{7}{2}) {}^{2} =  - 4 + ( \frac{7}{2}) {}^{2} \\ (x -  \frac{7}{2}) =  - 4 +  \frac{7 {}^{2} }{2 {}^{2} } \\ (x -  \frac{7}{2}) {}^{2} =  - 4 +  \frac{49}{2 {}^{2}} \\ (x -  \frac{7}{2}) {}^{2} =  - 4 +  \frac{49}{4} \\ (x -  \frac{7}{2}) {}^{2} =  \frac{33}{4} \\ (x -  \frac{7}{2}) {}^{2} - 4 +  \frac{7 {}^{2} }{2 {}^{2} } \\ (x -  \frac{7}{2}) {}^{2} =  \frac{33}{4} \\ x =  -  \frac{7}{2} =  +  \sqrt{ \frac{33}{2} } \\ x -  \frac{7}{2} =  +  \sqrt{ \frac{33}{2} } \\ x =  +  \sqrt{ \frac{33}{2} } +  \frac{7}{2} \\ x =  -  \frac{7}{2} =  +  \frac{ \sqrt{33} }{2} \\ x =  +  \frac{ \sqrt{33} }{2}  +  \frac{7}{2} \\ x_{} =  \frac{7}{2} =  +  \frac{ \sqrt{33} }{2} \\x =  \frac{7}{2} -  \sqrt{ \frac{33}{2} } \\ x = 7 +  \sqrt{ \frac{33}{2} } \\ x =  \frac{7}{2} -  \frac{ \sqrt{33} }{2} \\ x = 7 -  \frac{ \sqrt{33} }{2} \\ x =  \frac{7}{2} +  \frac{ \sqrt{33} }{2} \\ x = 7 -  \sqrt{ \frac{33}{2} } \\  \green{resposta} \\  \purple{x _{1} =  \frac{7 +  \sqrt{33} }{2}  }  \\  \purple{x_{2} =  \frac{7 -  \sqrt{33} }{2}  }

Perguntas interessantes