Bruno resolveu fazer uma aplicação a juros compostos hoje, para que daqui 8 meses retire R$ 1 500,00 e R$ 3.500,00 ao fim de um ano. Quanto Bruno deve investir então hoje, sabendo que o banco oferece uma de 10% a.a. ?
Soluções para a tarefa
=> Para resolver este exercício temos de atualizar os capitais ao seu "momento zero" ..ou seja calcular o seu Valor Presente (VP) ...e depois somá-los para encontrar o Capital inicial total investido
Assim, temos a fórmula
VP = VF(1 + i)^(-n)
Onde
VP = Valor Presente, neste caso a determinar para as 2 situações
VF = Valor Futuro das aplicações, neste caso 1500 e 3500
i = Taxa de Juro das aplicações, neste caso ANUAL 10% ...ou 0,1 (de 10/100)
n = Prazo das aplicações, EXPRESSO EM PERÍODOS DA TAXA, neste caso para a aplicação a 8 meses n = 8/12 = 2/3 ..para a aplicação a 1 ano n = 1
...como temos 2 aplicações Aplicação (a1) = 1500 e a Aplicação (a2) = 3500 ...podemos incluí-las na mesma fórmula ...donde resulta
VP = VF(a1)(1 + i)^(.n) + VF(a2)(1 + i)^(-n)
VP = 1500(1,1)^(-2/3) + 3500(1,1)^(-1)
VP = (1500 . 0,938436) + (3500 . 0,909091)
VP = 1407,655 + 3181,818
VP = 4589,473 <--- valor a investir R$ 4.589,47 (valor aproximado)
Espero ter ajudado