Matemática, perguntado por suicideoff, 1 ano atrás

BHASKARA!!! (AJUDA)

A) -2x^2+2x+12=0

B) 4x^2-2x-6=0

C) x^2-x-25=0

D) 9x^2+2x+4=0

E) x^2+4x+1=0

Soluções para a tarefa

Respondido por Usuário anônimo
2
Boa noite!

a)
<br />-2x^2+2x+12=0\text{ dividindo por -2}\\<br />x^2-x-6=0\\<br />\Delta=(-1)^2-4(1)(-6)=1+24=25\\<br />x=\frac{-(-1)\pm\sqrt{25}}{2(1)}\\<br />x=\frac{1\pm{5}}{2}\\<br />x'=\frac{1+5}{2}=3\\<br />x''=\frac{1-5}{2}=-2<br />

b)
<br />4x^2-2x-6=0\text{ dividindo por 2}\\<br />2x^2-x-3=0\\<br />\Delta=(-1)^2-4(2)(-3)=1+24=25\\<br />x=\frac{-(-1)\pm\sqrt{25}}{2(2)}\\<br />x=\frac{1\pm{5}}{4}\\<br />x'=\frac{1+5}{4}=\frac{3}{2}\\<br />x''=\frac{1-5}{4}=-1<br />

c)
<br />x^2-x-25=0\\<br />\Delta=(-1)^2-4(1)(-25)=101\\<br />x=\frac{-(-1)\pm\sqrt{101}}{2(1)}\\<br />x=\frac{1\pm\sqrt{101}}{2}\\<br />x'=\frac{1+\sqrt{101}}{2}\\<br />x''=\frac{1-\sqrt{101}}{2}<br />

d)
<br />9x^2+2x+4=0\\<br />\Delta=(2)^2-4(9)(4)=4-144=-140<br />\text{Nao ha raizes reais!}

e)
<br />x^2+4x+1=0\\<br />\Delta=(4)^2-4(1)(1)=16-4=12\\<br />x=\frac{-(4)\pm\sqrt{12}}{2(1)}\\<br />x=\frac{-4\pm{2}\sqrt{3}}{2}\\<br />x'=\frac{-4+{2}\sqrt{3}}{2}=-2+\sqrt{3}\\<br />x''=\frac{-4-{2}\sqrt{3}}{2}=-2-\sqrt{3}<br />

Espero ter ajudado!

Respondido por AltairAlves
2
A) -2x² + 2x + 12 = 0

Δ = b² - 4.a.c
Δ = (2)² - 4.(-2).(12)
Δ = 4 + 96
Δ = 100


 x \ = \ \frac{-b \ ^+_- \ \sqrt{\Delta}}{2.a}

 x \ = \ \frac{-(2) \ ^+_- \ \sqrt{100}}{2.(-2)}

 x \ = \ \frac{-2 \ ^+_- \ 10}{-4}



 x' \ = \ \frac{-2 \ + \ 10}{-4}

 x' \ = \ \frac{8}{-4}

 x' \ = \ -2



 x'' \ = \ \frac{-2 \ - \ 10}{-4}

 x'' \ = \ \frac{-12}{-4}

 x'' \ = \ 3


\boxed{\bold{S \ = \ (-2, \ 3)}}



B) 4x² - 2x - 6 = 0

Δ = b² - 4.a.c
Δ = (-2)² - 4.(4).(-6)
Δ = 4 + 96
Δ = 100


 x \ = \ \frac{-b \ ^+_- \ \sqrt{\Delta}}{2.a}

 x \ = \ \frac{-(-2) \ ^+_- \ \sqrt{100}}{2.(4)}

 x \ = \ \frac{2 \ ^+_- \ 10}{8}



 x' \ = \ \frac{2 \ + \ 10}{8}

 x' \ = \ \frac{12}{8}

 x' \ = \ \frac{3}{2}



 x'' \ = \ \frac{2 \ - \ 10}{8}

 x'' \ = \ \frac{-8}{8}

 x'' \ = \ -1


\boxed{\bold{S \ = \ (\frac{3}{2}, \ -1)}}



C) x² - x - 25 = 0

Δ = b² - 4.a.c
Δ = (-1)² - 4.(1).(-25)
Δ = 1 + 100
Δ = 101


 x \ = \ \frac{-b \ ^+_- \ \sqrt{\Delta}}{2.a}

 x \ = \ \frac{-(-1) \ ^+_- \ \sqrt{101}}{2.(1)}

x \ = \ \frac{1 \ ^+_- \ \sqrt{101}}{2}



x' \ = \ \frac{1 \ + \ \sqrt{101}}{2}



x'' \ = \ \frac{1 \ - \ \sqrt{101}}{2}



\boxed{\bold{S \ = \ (\frac{1 \ + \ \sqrt{101}}{2}, \ \frac{1 \ - \ \sqrt{101}}{2})}}

 

D) 9x² + 2x + 4 = 0

Δ = b² - 4.a.c

Δ = (2)² - 4.(9).(4)
Δ = 4 - 144
Δ =
-140

Não existem raízes reais para esta equação.



E) x² + 4x + 1 = 0


Δ = b² - 4.a.c
Δ = (4)² - 4.(1).(1)

Δ = 16 - 4
Δ = 12


 x \ = \ \frac{-b \ ^+_- \ \sqrt{\Delta}}{2.a}

 x \ = \ \frac{-(4) \ ^+_- \ \sqrt{12}}{2.(1)}

x \ = \ \frac{-4 \ ^+_- \ \sqrt{4 \ . \ 3}}{2}


x \ = \ \frac{-4 \ ^+_- \ 2\sqrt{3}}{2}



x' \ = \ \frac{-4 \ + \ 2\sqrt{3}}{2}


x' \ = \ \frac{-4}{2} \ + \ \frac{2\sqrt{3}}{2}


 x' \ = \ -2 \ + \ \sqrt{3}



x'' \ = \ \frac{-4 \ - \ 2\sqrt{3}}{2}

x'' \ = \ \frac{-4}{2} \ - \ \frac{2\sqrt{3}}{2}


 x'' \ = \ -2 \ - \ \sqrt{3}


 \boxed{\bold{S \ = \ (-2 \ + \ \sqrt{3}, \ -2 \ - \ \sqrt{3})}}



Perguntas interessantes